Skip to main content
Log in

Modeling of the Crystallization and Correlation of the Properties with the Composition and Particle Size in Two-Dimensional GaSxSe1 – x (0 ≤ х ≤ 1)

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The paper presents the results of modeling, theoretical and experimental investigations on the physicochemical conditions of the synthesis, calculation of the Т–х phase diagram, thermodynamics and kinetics of crystallization, and correlation of the properties with the composition and grain sizes of semiconducting solid solutions in the two-dimensional (2D) GaS–GaSe system, in which the complete range of GaSxSe1 – x (0 ≤ х ≤ 1) solid solutions is formed. GaSxSe1 – x (0 ≤ х ≤ 1) solid solutions are synthesized and, using the methods of physicochemical analysis, individual thermodynamic phases are identified. In the context of the developed model of solutions close to ideal solutions, the physicochemical and thermodynamic patterns of behavior of the GaS–GaSe Т–х phase diagram are determined. Using a thermodynamic technique, the temperature-concentration dependences of the change in the Gibbs free energy for GaSxSe1 – x (0 ≤ х ≤ 1) solid solutions are determined. The regularities of the kinetics of nucleation and crystallization, as well as the thermodynamics of cluster formation in multicomponent 2D systems are modeled. Electronic band structures of 2D GaS and GaSe are calculated within the framework of density functional theory. From theoretical calculations, the band gaps for GaS and GaSe monolayers are determined. The electrical absorption spectra of amorphous-film and bulk single-crystal GaSe samples are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Lukichev, V.F. and Amirov, I.I., Research and development in the field of micro and nanosystems, Istor. Nauki Tekh., 2018, no. 8, pp. 92–99.

  2. Asadov, S.M., Mustafaeva, S.N., and Lukichev, V.F., Charge transport in layer gallium monosulfide in direct and alternate electric fields, Russ. Microelectron., 2019, vol. 48, no. 6, pp. 422–427. https://doi.org/10.1134/S1063739719

    Article  Google Scholar 

  3. Mustafaeva, S.N. and Asadov, M.M., Currents of isothermal relaxation in GaS〈Yb〉 single crystals, Solid State Commun., 1983, vol. 45, no. 6, pp. 491–494. https://doi.org/10.1016/0038-1098(83)90159-X

    Article  Google Scholar 

  4. Asadov, S.M., Mustafaeva, S.N., Lukichev, V.F., and Guseinov, D.T., Effect of the composition on the dielectric properties and charge transfer in 2D GaS1–xSex materials, Russ. Microelectron., 2019, vol. 48, no. 4, pp. 203–207. https://doi.org/10.1134/S1063739719040024

    Article  Google Scholar 

  5. Asadov, S.M., Mustafaeva, S.N., and Mammadov, A.N., Thermodynamic assessment of phase diagram and concentration-temperature dependences of properties of solid solutions of the GaS–GaSe system, J. Therm. Anal. Calorim., 2018, vol. 133, no. 2, pp. 1135–1141.

    Article  Google Scholar 

  6. Mustafaeva, S.N., Asadov, M.M., and Ismailov, A.A., Charge transfer along localized states in InSe and InSe〈Sn〉 single crystals, Low Temp. Phys., 2010, vol. 36, no. 4, pp. 310–312. https://doi.org/10.1063/1.3388822

    Article  Google Scholar 

  7. Mustafaeva, S.N., Asadov, M.M., and Ismailov, A.A., Effect of γ irradiation on the parameters of localized states in p-InSe and n-InSe〈Sn〉 single crystals, Low Temp. Phys., 2010, vol. 36, no. 7, pp. 642–644. https://doi.org/10.1063/1.3479690

    Article  Google Scholar 

  8. Mustafaeva, S.N., Asadov, M.M., and Ismailov, A.A., Charge transfer over localized states in a TlS single crystal, Phys. Solid State, 2008, vol. 50, no. 11, pp. 2040–2043. https://doi.org/10.1134/S1063783408110073

    Article  Google Scholar 

  9. Mustafaeva, S.N., Asadov, M.M., and Ismailov, A.A., Dielectric and baric characteristics of TlS single crystal, Phys. B (Amsterdam, Neth.), 2014, vol. 453, pp. 158–160. https://doi.org/10.1016/j.physb.2014.03.095

  10. Asadov, M.M., Guseinova, S.S., and Lukichev, V.F., Ab initio modeling of the electronic and energy structure and opening the band gap of a 4p-element doped graphene monolayer, Russ. Microelectron., 2020, vol. 49, no. 5, pp. 314–323.

    Article  Google Scholar 

  11. Medvedeva, Z.S., Khal’kogenidy elementov III B podgruppy periodicheskoi sistemy (Chalcogenides of Elements IIIB Subgroup of the Periodic System), Moscow: Nauka, 1968.

  12. Mustafaeva, S.N. and Asadov, M.M., High field kinetics of photocurrent in GaSe amorphous films, Mater. Chem. Phys., 1986, vol. 15, pp. 185–189. https://doi.org/10.1016/0254-0584(86)90123-9

    Article  Google Scholar 

  13. Jung, C.S., Shojaei, F., Park, K., Oh, J.Y., Im, H.S., Jang, D.M., Park, J., and Kang, H.S., Red-to-ultraviolet emission tuning of two-dimensional gallium sulfide/selenide, ACS Nano, 2015, vol. 9, no. 10, pp. 9585–9593. https://doi.org/10.1021/acsnano.5b04876

    Article  Google Scholar 

  14. Hu, P.A., Wen, Z.Z., Wang, L.F., Tan, P.H., and Xiao, K., Synthesis of few-layer GaSe nanosheets for high performance photodetectors, ACS Nano, 2012, vol. 6, no. 7, pp. 5988–5994. https://doi.org/10.1021/nn300889c

    Article  Google Scholar 

  15. Li, X.F., Lin, M.W., Puretzky, A.A., Idrobo, J.C., Ma, C., Chi, M.F., Yoon, M., Rouleau, C.M., Kravchenko, I.I., Geohegan, D.B., and Xiao, K., Controlled vapor phase growth of single crystalline, two-dimensional GaSe crystals with high photoresponse, Sci. Rep., 2015, vol. 4, pp. 1–9. https://doi.org/10.1038/srep05497

    Article  Google Scholar 

  16. Tan, L., Liu, Q., Ding, Y., Lin, X., Hu, W., Cai, M.-Q., and Zhou, H., Effective shape-controlled synthesis of gallium selenide nanosheets by vapor phase deposition, Nano Res., 2020, CN 11-5974/O4. https://doi.org/10.1007/s12274-020-2653-8

  17. Ho, C.H., Wang, S.T., Huang, Y.S., and Tiong, K.K., Structural and luminescent property of gallium chalcogenides GaSe1 – xSx layer compounds, J. Mater. Sci.: Mater. Electron., 2009, vol. 20, pp. S207–S210. https://doi.org/10.1007/s10854-007-9539-3

    Article  Google Scholar 

  18. Bereznaya, S., Korotchenko, Z., Redkin, R., Sarkisov, S., Tolbanov, O., Trukhin, V., Gorlenko, N., Sarkisov, Y., and Atuchin, V., Broadband and narrowband terahertz generation and detection in GaSe1 – xSx crystals, J. Opt., 2017, vol. 19, no. 11, p. 115503. https://doi.org/10.1088/2040-8986/aa8e5a

    Article  Google Scholar 

  19. Kolesnikov, N.N., Borisenko, E.B., Borisenko, D.N., Tereshchenko, A.N., and Timonina, A.V., Synthesis and growth of GaSe1 – xSx (x = 0–1) crystals from melt. Phase composition and properties, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 1, pp. 66–69. https://doi.org/10.1134/S2075113318010173

    Article  Google Scholar 

  20. Mullin, J.W., Crystallization, 4th ed., Oxford, UK: Butterworth-Heinemann, 2001.

    Google Scholar 

  21. Phase Transformations in Multicomponent Melts, Herlach, D.M., Ed., Weinheim: Wiley-VCH, 2008.

  22. Aaronson, H.I., Enomoto, M., and Lee, J.K., Mechanisms of Diffusional Phase Transformations in Metals and Alloys, 1st ed. Boca Raton: CRC, Taylor and Francis Group, 2010.

    Google Scholar 

  23. Kukushkin, S.A. and Slezov, V.V., Dispersnye sistemy na poverkhnosti tverdykh tel (evolyutsionnyi podkhod): mekhanizmy obrazovaniya tonkikh plenok (Dispersed Systems of the Solid Surface (Evolutionary Approach): Mechanisms for the Formation of Thin Films), St. Petersburg: Nauka, 1996.

  24. Chernov, A.A., Modern Crystallography III, Berlin etc.: Springer, 1984. https://doi.org/10.1007/978-3-642-81835-6

  25. Nucleation in Condensed Matter: Applications in Materials and Biology, Kelton, K.F. and Greer, A.L., Eds., Vol. 15 of Pergamon Materials Series, Amsterdam: Elsevier, Pergamon, 2010.

    Google Scholar 

  26. Hu, P.A., Wen, Z.Z., Wang, L.F., Tan, P.H., and Xiao, K., Synthesis of few-layer GaSe nanosheets for high performance photodetectors, ACS Nano, 2012, vol. 6, no. 7, pp. 5988–5994. https://doi.org/10.1021/nn300889c

    Article  Google Scholar 

  27. Li, X.F., Lin, M.W., Puretzky, A.A., Idrobo, J.C., Ma, C., Chi, M.F., Yoon, M., Rouleau, C.M., Kravchenko, I.I., Geohegan, D.B., and Xiao, K., Controlled vapor phase growth of single crystalline, two-dimensional gase crystals with high photoresponse, Sci. Rep., 2015, vol. 4, pp. 1–9. https://doi.org/10.1038/srep05497

    Article  Google Scholar 

  28. Jung, C.S., Shojaei, F., Park, K., Oh, J.Y., Im, H.S., Jang, D.M., and Kang, H.S., Red-to-ultraviolet emission tuning of two-dimensional gallium sulfide/selenide, ACS Nano, 2015, vol. 9, no. 10, pp. 9585–9593. https://doi.org/10.1021/acsnano.5b04876

    Article  Google Scholar 

  29. Ahmedly, K.M. and Asadov, M.M., Procedure for calculating phase equilibrium in simple binary systems of ideal liquid and solid solution, Inorg. Mater., 1996, vol. 32, no. 2, pp. 133–134.

    Google Scholar 

  30. Asadov, M.M., Mustafaeva, S.N., Mamedov, A.N., and Tagiyev, D.B., Effect of composition on the properties of (TlInSe2)1 – x(TlGaTe2)x solid solutions, Inorg. Mater., 2015, vol. 51, no. 12, pp. 1232–1236. https://doi.org/10.1134/S0020168515110011

    Article  Google Scholar 

  31. Ribeiro, C., Lee, E.J.H., Longo, E., and Leite, E.R., A kinetic model to describe nanocrystal growth by the oriented attachment mechanism, Chem. Phys. Chem., 2005, vol. 6, pp. 690–696. https://doi.org/10.1002/cphc.200400505

    Article  Google Scholar 

  32. Illeková, E. and Šesták, J., Crystallization of metallic micro-, nano-, and non-crystalline alloys, in Thermal Analysis of Micro, Nano- and Non-Crystalline Materials, Dordrecht: Springer Science, 2013, pp. 257–289.https://doi.org/10.1007/978-90-481-3150-1_13

    Book  Google Scholar 

  33. Bader, R.F.W., Atoms in Molecules. A Quantum Theory, Oxford, UK: Clarendon, 1994.

    Google Scholar 

Download references

Funding

This study was supported by the Science Development Foundation under the President of the Republic of Azerbaijan, project no. EİF-BGM-4-RFTF-l/2017-21/05/l-M-07 and the Russian Foundation for Basic Research, project no. 18-57-06001 no. Az_a 2018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. M. Asadov or V. F. Lukichev.

Ethics declarations

The authors declare that they do not have conflict of interest.

Additional information

Translated by Z. Smirnova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadov, S.M., Mustafaeva, S.N. & Lukichev, V.F. Modeling of the Crystallization and Correlation of the Properties with the Composition and Particle Size in Two-Dimensional GaSxSe1 – x (0 ≤ х ≤ 1). Russ Microelectron 49, 452–465 (2020). https://doi.org/10.1134/S1063739721010042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739721010042

Keywords:

Navigation