Skip to main content
Log in

Atomic Layer Deposition of Silicon Nitride Films on Gallium Arsenide Using a Glow Discharge

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The process of the formation of silicon–nitrogen nanostructures at a GaAs surface with orientation (100) and (110) by atomic layer deposition (molecular layering) is considered. The synthesis ios carried out in a vacuum unit using SiCl4 and NH3 vapors in the temperature range 423–723 K with activation of the process by a glow discharge at the ammonia pulsing stage. The conditions of the growth of silicon nitride nanostructures and the conditions of a layer mechanism of their formation are determined. It is established that, at temperatures of synthesis above 573 K, the increase in the silicon nitride layer’s thickness reaches ≈0.5 nm/cycle, which is likely to be explained by the participation of hydrazine in the process of film formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ezhovskii, Yu.K., Formation and dielectric characteristics of nanolayers of tantalum and aluminum oxides, Mikroelektronika, 2013, vol. 42, no. 6, pp. 447–453.

    Google Scholar 

  2. Ahvenniemi, E., Akbashev, A.R., Ali, S., et al., Review article: recommended reading list of early publications on atomic layer deposition - outcome of the “virtual project on the history of ALD”, J. Vac. Sci. Technol., A, 2017, vol. 35, no. 1, p. 010801.

    Article  Google Scholar 

  3. Malygin, A.A., Drozd, V.E., Malkov, A.A., Smirnov, V.M., and From, V.B., Aleskovskii’s “framework” hypothesis to the method of molecular layering/atomic layer deposition, Chem. Vapor Depos., 2015, vol. 21, no. 10, pp. 216–240.

    Article  Google Scholar 

  4. Kaariainen, T., Cameron, D., Kaariainen, M.-L., and Sherman, A., Atomic Layer Deposition: Principles, Characteristics, and Nanotechnology Applicatons, 2nd ed., Hoboken, NJ, Salem, MA: Wiley, Scrivener, 2013.

    Book  Google Scholar 

  5. Tripathi, T.S. and Karppinen, M., Atomic layer deposition of p-type semiconducting thin films: a review, Adv. Mater. Interfaces, 2017, vol. 4, no. 24, p. 1700300.

    Article  Google Scholar 

  6. Sobel, N. and Hess, C., Nanoscale structuring of surfaces by using atomic layer deposition, Angew. Chem. Int. Ed., 2015, vol. 54, no. 50, pp. 15014–15021.

    Article  Google Scholar 

  7. Belyansky, M., Thin film deposition for front end of line: the effect of the semiconductor scaling, strain engineering and pattern effects, in Handbook of Thin Film Deposition, 4th ed., Seshan, K. and Schepis, D., Eds., Kidlington, Oxford: William Andrew, Elsevier, 2018, pp. 231–268.

  8. Ezhovskii, Yu.K., Molecular layering of silicon nitride nanolayers, Zh. Fiz. Khim., 2017, vol. 91, no. 7, pp. 1207–1210.

    Google Scholar 

  9. Ezhovskii, Yu.K., Reactivity of solid surfaces in the chemical nanotechnology of low-dimensional systems, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2015, vol. 9, no. 3, pp. 462–467.

    Article  Google Scholar 

  10. Gromov, V.K., Vvedenie v ellipsometriyu (Introduction to Ellipsometry), Leningrad: Leningr. Gos. Univ., 1986.

  11. Nefedov, V.I. and Cherepin, V.T., Fizicheskie metody issledovaniya poverkhnosti tverdykh tel (Physical Methods of Studying Solid Surfaces), Moscow: Nauka, 1983.

  12. Nefedov, V.I., Rentgeno-elektronnaya spektroskopiya khimicheskikh soedinenii (X-ray Electron Spectroscopy of Chemical Compounds), Moscow: Khimiya, 1984.

  13. Rubtsova, E.A. and Eremin, E.N., Heterogeneous catalytic effects in ammonia reactions in electrical discharges. I. Glow discharge, Zh. Fiz. Khim., 1968, vol. 42, no. 4, pp. 1022–1026.

    Google Scholar 

  14. Rubtsova, E.A. and Eremin, E.N., Heterogeneous catalytic effects in ammonia reactions in electrical discharges. III. Barrier discharge, Zh. Fiz. Khim., 1971, vol. 45, no. 6, pp. 1499–1503.

    Google Scholar 

  15. Yi, Y., Zhang, R., Wang, L., Yan, J., et al., Plasma-triggered CH4/NH3 coupling reaction for direct synthesis of liquid nitrogen-containing organic chemicals, ACS Omega, 2017, vol. 2, no. 12, pp. 9199–9210.

    Article  Google Scholar 

  16. Mitchell, J.W. and Holland, R.A., Microwave plasma in situ generation of nitride reagents, Mater. Lett., 2006, vol. 60, no. 12, pp. 1524–1526.

    Article  Google Scholar 

Download references

FUNDING

The work was supported financially in part by the Ministry of Education and Science under a state assignment (project no. 16.1798.2017/4.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Ezhovskii.

Additional information

Translated by Z. Smirnova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezhovskii, Y.K., Mikhailovskii, S.V. Atomic Layer Deposition of Silicon Nitride Films on Gallium Arsenide Using a Glow Discharge. Russ Microelectron 48, 229–235 (2019). https://doi.org/10.1134/S1063739719030041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739719030041

Keywords:

Navigation