Skip to main content
Log in

Marine sponges Sarcotragus foetidus, Xestospongia carbonaria and Spongia obscura constituents ameliorate IL-1 β and IL-6 in lipopolysaccharide-induced RAW 264.7 macrophages and carrageenan-induced oedema in rats

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Marine sponges are prolific producers of an array of diverse chemical structures containing compounds with multiple biological activities. In this study, whole methanol extracts and fractionated compounds from three marine sponges namely Xestospongia carbonaria, Sarcotragus foetidus and Spongia obscura were thoroughly investigated for their antibacterial, antifungal, antioxidant and anti-inflammatory activities. Methanol extracts and fractionated compounds were characterised using high performance liquid chromatography–mass spectrometry and gas chromatography–mass spectrometry. Extracts were checked for cytotoxicity in RAW macrophages by MTT assay, before using them for the treatment study. Enzyme linked immunosorbent assay kits were used to check the effects on inflammatory mediator’s levels (PGE2, COX-2, IL-6, IL-1β, TNF-α) in vitro. The results demonstrated good anti-inflammatory activity of all the three marine sponges; X. carbonaria, S. foetidus and S. obscura suppressed the levels of anti-inflammatory cytokines in vitro. Reverse transcriptase-polymerase chain reaction confirmed the inhibition of IL-1β and IL-6 genes expression by the isolates of X. carbonaria and S. foetidus, while reducing cytokine levels in lipopolysaccharide-induced inflammation in vitro as well as in carrageenan-induced inflammation in rats. Two semi pure compounds isolated from X. carbonaria and S. foetidus also confirmed suppression of IL-1β and IL-6 genes expression in RAW macrophages.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ali K, Iqbal M, Yuliana ND, Lee Y-J, Park S, Han S, Lee J-W, Lee H-S, Verpoorte R, Choi YH (2013) Identification of bioactive metabolites against adenosine A1 receptor using NMR-based metabolomics. Metabolomics 9:778–785

    CAS  Google Scholar 

  • Alvi KA, Rodriguez J, Diaz MC, Moretti R, Wilhelm RS, Lee RH, Slate DL, Crews P (1993) Protein tyrosine kinase inhibitory properties of planar polycyclics obtained from the marine sponge Xestospongiacf. carbonaria and from total synthesis. J Org Chem 58(18):4871–4880

    CAS  Google Scholar 

  • Andriani Y, Marlina L, Mahamad H, Amir H, Radzi SAM, Saidin J (2017) Anti-inflammatory activity of Bacteria associated with marine sponges (Haliclona amboinensis) via reducing NO production and inhibiting cyclooxygenase-1, cyclooxygenase-2, and secretory Phospholipase A2 activities. Asian J Pharm Clin Res 10(11):95–100

    CAS  Google Scholar 

  • Ankisetty S, Gochfeld DJ, Díaz MC, Khan SI, Slattery M (2010) Chemical constituents of the deep reef Caribbean sponges Plakortis angulospiculatus and Plakortis halichondrioides and their anti-inflammatory activities. J Nat Prod 73(9):1494–1498. https://doi.org/10.1021/np100233d

    Article  CAS  PubMed  Google Scholar 

  • Ankisetty S, Slattery M (2012) Antibacterial secondary metabolites from the Cave sponge Xestospongia sp. Mar Drugs 10(5):1037–1043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aspirin (2019) Aspirin Side Effects Centre, Rx List. https://www.rxlist.com/aspirin-side-effects-drug-center.htm

  • Athira Krishnan KA, Keerthi TF (2016) Analyses of methanol extracts of two marine sponges, Spongia officinalis var. ceylonensis and Sigmadocia carnosa from Southwest coast of India for their bioactivities. Int J Curr Microbio App Sci 5(2):722–734

    Google Scholar 

  • Azevedo LG, Persia GG, Lerner C, Soares A, Murcia N, Muccillo-Baisch AL (2008) Investigation of the anti-inflammatory and analgesic effects from an extract of Aplysina caissara, a marine sponge. Fund Clin Pharmacol 22(5):549–556. https://doi.org/10.1111/j.1472-8206.2008.00624.x

    Article  CAS  Google Scholar 

  • Barthel D, Gutt J, Tendal OS (1991) New information on the biology of Antarctic deep-water sponges derived from underwater photography. Mar Ecol Prog Ser 69:303–307

    Google Scholar 

  • Basic Principles of RT-qPCR (2019) ThermoFischer Scientific. https://www.thermofisher.com/in/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/spotlight-articles/basic-principles-rt-qpcr.html

  • Bauvais C, Bonneau N, Blond A, Pérez T, Bourguet-Kondracki ML, Zirah S (2017) Furanoterpene diversity and variability in the metal polluted sponge Spongia officinalis, from untargeted LC-MS/MS metabolic profiling to furano lactam derivatives. Metabolites 7(2):27

    PubMed Central  Google Scholar 

  • Bell JJ (2007) Contrasting patterns of species and functional composition for coral reef sponge assemblages. Mar Ecol Prog Ser 339:73–81

    Google Scholar 

  • Cheenpracha S, Park EJ, Rostama B, Pezzuto JM, Chang LC (2010) Inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-activated murine macrophage RAW 264.7 cells by the norsesterterpene peroxide Epimuqubilin A. Mar Drugs 8(3):429–437. https://doi.org/10.3390/md8030429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costantino V, Fattorusso E, Mangoni A, Perinu C, Cirino G, de Gruttola L, Roviezzo F (2009) Tedanol: a potent anti-inflammatory ent-pimarane diterpene from the Caribbean Sponge Tedania ignis. Bioorg Med Chem 17(21):7542–7547. https://doi.org/10.1016/j.bmc.2009.09.010

    Article  CAS  PubMed  Google Scholar 

  • Dayton PK, Robilliard GA, Paine RT, Dayton LB (1974) Biological accommodation in the benthic community at McMurdo sound, Antarctica. Ecol Monogr 44:105–128

    Google Scholar 

  • De Almeida LP, Carroll AR, Towerzet L, King G et al (2018) Exiguaquinol: a novel pentacyclic hydroquinone from Neopetrosia exigua that exhibits Helicobacter pyroli. Murl Org Lett 10(12):2585–2588

    Google Scholar 

  • Dellai A, Deghrigue M, Laroche-Clary A, Masour HB, Chouchane N, Robert J et al (2012) Evaluation of antiproliferative and anti-inflammatory activities of methanol extract and its fractions from the Mediterranean sponge. Cancer Cell Int 12:18

    PubMed  PubMed Central  Google Scholar 

  • Dellai A, Laroche-Clary A, Mhadhebi L, Robert J, Bouraoui A (2010) Anti-inflammatory and antiproliferative activities of crude extract and its fractions of the defensive secretion from the Mediterranean sponge Spongia officianlis. Drug Develop Res 71(7):412–418

    CAS  Google Scholar 

  • Diaz MC, Alvarez B, Laughlin RA (1990) The sponge fauna on a fringing coral reef in Venezuela, II: community structure. In: Rutzler K (ed) New perspectives in sponge biology. Smithsonian Institute Press, London, pp 367–375

    Google Scholar 

  • Ebada SS, Edrada RA, Lin W, Proksch P (2008) Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates. Nat Protoc 3(12):1820–1831

    CAS  PubMed  Google Scholar 

  • El-Shitany NA, Shaala LA, Abbas AT, Abdel-Dayem UA, Azhar EI, Ali SS et al (2015) Evaluation of the anti-inflammatory, antioxidant and immunomodulatory effect of the organic extract of the red sea marine sponge Xestospongia testudinaria against carrageenan induced rat paw inflammation. PLoS ONE 10(9):e0138917

    PubMed  PubMed Central  Google Scholar 

  • Elsayed Y, Refaat J, Abdelmohsen UR, Othman EM, Stopper H, Fouad MA (2018) Metabolomic profiling and biological investigation of the marine sponge-derived bacterium Rhodococcus sp. UA13. Phytochem Anal 29(6):543–548

    CAS  PubMed  Google Scholar 

  • Enticknap JJ, Kelly M, Peraud O, Hill RT (2006) Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. Appl Environ Microbiol 72:3724–3732

    CAS  PubMed  PubMed Central  Google Scholar 

  • George SC, Lisk M, Eadington P (2004) Fluid inclusion evidence for an early, marine-sourced oil charge prior to gas-condensate migration, Bayu-1, Timor Sea Australia. Mar Petrol Geol 21(9):1107–1128

    CAS  Google Scholar 

  • Goulitquer S, Potin P, Tonon T (2012) Mass spectrometry-based Metabolomics to elucidate functions in the marine organisms and ecosystems. Mar Drugs 10:849–880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardoim CCP, Costa R (2014) Microbial communities and bioactive compounds in marine sponges of the Family Irciniidae—a review. Mar Drugs 12(10):5089–5122. https://doi.org/10.3390/md12105089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang M, Lu JJ, Huang MQ, Bao JL, Chen XP, Wang YT (2012) Terpenoids: natural products for cancer therapy. Expert Opin Investig Drugs 21(12):1801–1818. https://doi.org/10.1517/13543784.2012.727395

    Article  CAS  PubMed  Google Scholar 

  • Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4(3):206–220

    CAS  PubMed  Google Scholar 

  • Kosmides AK, Kamisoglu K, Calvano SE, Corbett SA, Androulakis IP (2013) Metabolomic fingerprinting: challenges and opportunities. Crit Rev Biomed Eng 41:205–221

    PubMed  PubMed Central  Google Scholar 

  • Kumar MS, Pal AK (2012) Investigation of bioactivity of extracts of Marine Sponge, Spongosorites halichondrioides (Dendy, 1905) from western coastal areas of India. Asian Pac J Trop Biomed 2(3):S1784–S1789

    Google Scholar 

  • Kumar MS, Pandita NS, Pal AK (2012) LC-MS/MS as a tool for identification of bioactive compounds in Marine sponge Spongosorites halichondriodes (Dendy 1905). Toxicon 60:1135–1147

    CAS  PubMed  Google Scholar 

  • Kumar MS, Vijaylaxmi KK, Pal AK (2014) Anti-inflammatory and antioxidant properties of Spongosorites halichondriodes, a marine sponge. Turk J Pharm Sci 11(3):285–294

    Google Scholar 

  • Kumar S, Mohite SA, Mohite AS, Salvi PV (2018) Diversity of sponges (Porifera) in coastal waters of South-West coast of Maharashtra, India. Indian Res J Genet Biotech 10(3):363–374

    Google Scholar 

  • Laport MS, Santos OS, Muricy G (2009) Marine sponges: potential sources of new antimicrobial drugs. Curr Pharm Biotechnol 10:86–105

    CAS  PubMed  Google Scholar 

  • Laskin DL, Laskin JD (2001) Role of macrophages and inflammatory mediators in chemically induced toxicity. Toxicology 160(1–3):111–118

    CAS  PubMed  Google Scholar 

  • Lee OO, Chui PY, Wong YH, Pawlik JR, Qian PY (2009) Evidence for vertical transmission of bacterial symbionts from adult to embryo in the Caribbean sponge Svenzea zeai. Appl Environ Microbiol 75:6147–6156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Li J, Liu Y et al (2012) Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-kB pathway in RAW 264.7 cells. Inflammation 35(5):1676–1684

    CAS  PubMed  Google Scholar 

  • Liu Y, Jung JH, Ji H, Zhang S (2006) Glycerolipids from a Sarcotragus species sponge. Molecules 11(9):714–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mabhiza D, Chitermerere T, Mukanganyama S (2016) Antibacterial properties of alkaloid extracts from Calkistemon citrinus and Vermont’s adoensis against Staphylococcus aureus and Pseudomonas aeruginosa. Int J Med Chem. https://doi.org/10.1155/2016/6304163

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahajna S, Azab M, Zaid H, Farich BA, Battah FA, Mashner S et al (2015) In vitro evaluations of cytotoxicity and anti-inflammatory effects of Peganum harmala seed extracts inTHP-1 derived macrophages. Eur J Med Plant 5(2):165–175

    Google Scholar 

  • Mahdi-Pour B, Jothy SL, Latha LY, Chen Y, Sasidharan S (2012) Antioxidant activity of methanol extracts of different parts of Lantana camara. Asian Pac J Trop Biomed 2(12):960–965. https://doi.org/10.1016/S2221-1691(13)60007-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McInnes I, Schett G (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7:29–442. https://doi.org/10.1038/nri2094

    Article  CAS  Google Scholar 

  • Mensor LL, Menezes FS, Leitao GG, Reis AS, Dos Santos TC, Coube CS et al (2001) Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical. Phytother Res 15(2):127–130

    CAS  PubMed  Google Scholar 

  • Mizushima Y, Kobayashi M (1968) Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. J Pharma Pharmacol 20:169–173

    CAS  Google Scholar 

  • Moles J, Torrent A, Jose Alcaraz M, Ruhi R, Avila C (2014) Anti-inflammatory activity in the selected Antarctic benthic organisms. Front Mar Sci 1:24. https://doi.org/10.3389/fmars.2014.00024

    Article  Google Scholar 

  • Morris CJ (2003) Carrageenan-induced paw edema in the rat and mouse. Methods Mol Biol Inflam Protocols. https://doi.org/10.1385/1-59259-374-7:115

    Article  Google Scholar 

  • Morris SA (1986) Novel Secondary Metabolites Isolated from Selected Marine Invertebrates. University of British Columbia.

  • Nagalla S, Bray PF (2019) Drug-Induced platelet dysfunction. Hematology. Cancer Therapy Advisor. https://www.cancertherapyadvisor.com/home/decision-support-in-medicine/hematology/drug-induced-platelet-dysfunction/

  • Northcote PT (1989) Novel terpenoids metabolites from the marine sponge Xestospongia vanillia. University of British Columbia

  • Odebiyi A, Sofowora AE (1990) Phytochemical screening of Nigerian medicinal plants Part III. Lloydia 41(3):234–246

    Google Scholar 

  • Pacienza N, Lee RH, Bae EH, Kim DK, Lou Q, Prockop DJ et al (2018) In vitro macrophages assay predicts the in vivo anti-inflammatory potential of exosomes from human mesenchymal stromal cells. Mol Ther Methods Clin Dev 13:67–76

    PubMed  PubMed Central  Google Scholar 

  • Pallela R, Ramjee K, Srikanth K, Gunda V, Gopal V et al (2011) Comparative morphometry, biochemical and elemental composition of three marine sponges (Petrosiidae) from Gulf of Mannar, India. Chem Spec Bioavail 23(1):16–23

    CAS  Google Scholar 

  • Park EJ, Cheenpracha S, Chang LC, Pezzuto JM (2011) Suppression of cyclooxygenase-2 and inducible nitric oxide synthase expression by epimuqubilin A via IKK/IκB/NF-κB pathways in lipopolysaccharide-stimulated RAW 264.7 cells. Phytochem Lett 4(4):426–431. https://doi.org/10.1016/j.phytol.2011.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posadas I, de Rosa S, Carmen Terencio M, Payá M, Alcaraz MJ (2003) Cacospongionolide B suppresses the expression of inflammatory enzymes and tumour necrosis factor-α by inhibiting nuclear factor-κB activation. Br J Pharmacol 138(8):1571–1579. https://doi.org/10.1038/sj.bjp.0705189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putra MY, Hadi TA, Murniqsih T (2016) In vitro antibacterial and antifungal activities of twelve sponges collected from the Anambas Islands, Indonesia. Asian Pac J Trop Dis 6(9):732–735

    Google Scholar 

  • Qaralleh H, Idid SO, Idid SZ, Saad S, Darnis DS, Taher BM et al (2010) Antifungal and antibacterial activities of four Malaysian sponge species (Petrosiidae). J Med Mycol 20(4):315–320

    Google Scholar 

  • Quintana J, Brango-Vanegas J, Costa GM, Castellanos L, Arévalo C, Duque C (2015) Marine organisms as source of exacts to disrupt bacterial communication: bioguided isolation and identification of quorum sensing inhibitors from Ircinia felix. Rev Bras Farmacogn 25(3):199–207

    CAS  Google Scholar 

  • Radzi SAM, Andriani Y, Mohamad H, Mohamad TST, Saidin J (2015) In-vitro anti-inflammatory activities of extracts from bacteria associated with marine sponges Theonella sp. J Teknol 77(25):165–169. https://doi.org/10.1016/j.bjp.2015.03.013

    Article  CAS  Google Scholar 

  • Rutzler K (1975) The role of burrowing sponges in bioerosion. Oecologia 19:203–219

    PubMed  Google Scholar 

  • Sathe BS, Jagtap VA, Deshmukh SD, Jain BV (2011) Screening of in vitro anti-inflammatory activity of some newly synthesized fluorinated benzothiazolo imidazole compounds. Int J Pharm Pharm Sci 3(3):220–222

    CAS  Google Scholar 

  • Schoggins JW, Randall G (2013) Lipids in innate antiviral defense. Cell Host Microbe 14(4):379–385. https://doi.org/10.1016/j.chom.2013.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo YJ, Lee KT, Rho JR, Choi JH (2015) Phobaketal A, isolated from the marine sponge Phorbas sp., exerts its anti-inflammatory effects via NF-кB inhibition and heme oxygenase-1 activation in lipopolysaccharide-stimulated macrophages. Mar Drugs 13(11):7005–7019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shady NH, El-Hossary EM, Fouad MA, Gulder TAM, Kamel MS, Abdelmohsen UR (2017) Bioactive natural products of marine sponges from the genus Hyrtios. Molecules 22(5):7981. https://doi.org/10.3390/molecules22050781

    Article  CAS  Google Scholar 

  • Sharma JN, Al-Omran A, Parvathy SS (2007) Role of nitric oxide in inflammatory diseases. Inflammopharmacol 15(6):252–259

    CAS  Google Scholar 

  • Steger D, Ettinger-Epstein P, Whalan S, Hentschel U, de Nys R, Wagner M et al (2008) Diversity and mode of transmission of ammonia-oxidizing archaea in marine sponges. Environ Microbiol 10:1087–1094

    CAS  PubMed  Google Scholar 

  • Terracciano S, Aquino M, Rodriquez M, Chiara Monti M, Casapullo A, Riccio R et al (2006) Chemistry and biology of anti-inflammatory marine natural products: molecules interfering with cyclooxygenase, NF-kB and other unidentified targets. Curr Med Chem 13(16):1947–1969. https://doi.org/10.2174/092986706777585095

    Article  CAS  PubMed  Google Scholar 

  • Tommonaro G, Iodice C, Abd El-Hady FK, Guerriero G, Pejin B (2015) The Mediterranean Sponge dysidea avara as a 40 year inspiration of marine natural product chemists. J Biodivers Endanger Specs S 1:001. https://doi.org/10.4172/2332-2543.S1-001

    Article  Google Scholar 

  • Vogel AI (1974) Practical Organic Chemistry including qualitative organic analysis, 3rd edn, Longmans, Green and Co., New York, pp 1214

    Google Scholar 

  • Wulff JL (2006) Ecological interactions of marine sponges. Can J Zoo 84:46–166

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Department of Biotechnology, Government of India (Project No. BT/PR12182/AAQ/3/696/2014). We are thankful to Mr. Shailendra Rane at Shimadzu Labs, Mumbai to extend the facility for carrying out Preparative HPLC–MS. We also thank Dr. Swapnaja Mohite, for helping us with correct identification of sponges and confirm their taxonomy. We remain grateful to our home institution SVKM’S NMIMS for all the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maushmi S. Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhari, S., Kumar, M.S. Marine sponges Sarcotragus foetidus, Xestospongia carbonaria and Spongia obscura constituents ameliorate IL-1 β and IL-6 in lipopolysaccharide-induced RAW 264.7 macrophages and carrageenan-induced oedema in rats. Inflammopharmacol 28, 1091–1119 (2020). https://doi.org/10.1007/s10787-020-00699-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-020-00699-2

Keywords

Navigation