Skip to main content
Log in

The Strategies of Organization of the Fish Plasma Proteome: with and without Albumin

  • REVIEW
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

Various principles of organization of the blood plasma proteome are considered using the example of teleost fishes, whose lower members have albumin, while the higher members have lost it. Albumin, which creates the colloid osmotic pressure of blood plasma and is involved in lipid transport and other functions, is compared to the multifunctional potential of high-density lipoproteins (HDL), which dominate in the blood of bony fishes and probably compensate for the lack of albumin in higher Teleostei. The elements of the structural organization and functions of two proteins, that is, albumin and apolipoprotein A (as a part of HDL) that are dominant in the blood of fish, the features of the plasma proteome in marine and freshwater fishes, and the hypothesis of the evolution of the plasma proteome and a special strategy of osmoregulation in Teleostei (with the involvement of serum HDL and without albumin) are considered. Two strategies of organization of the fish blood plasma proteome are noted: on the branch that led to Teleostei an expansion of the size–compositional range of lipoproteins and an increase in the role of HDL in metabolic processes occurred; on the branch that led to Mammalia a separation of the lipid transport and osmoregulation functions occurred between lipid and albumin and an increase in the albumin content in the blood plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Andreeva, A.M., The role of structural organization of blood plasma proteins in the stabilization of water metabolism in bony fish (Teleostei), J. Ichthyol., 2010, vol. 50, no. 7, pp. 552–558.

    Article  Google Scholar 

  2. Andreeva, A.M., Protein aggregates stoichiometry in fish plasma, Tr.Inst. Biol. Vnutr. Vod, Ross. Akad. Nauk: Genet. Biokhim. Vodn. Zhivotn., 2017, vol. 80, no. 83, pp. 5–19.

    Google Scholar 

  3. Andreeva, A.M., Lamash, N.E., Serebryakova, M.V., Ryabtseva, I.P., and Bolshakov, V.V., Reorganization of low-molecular-weight fraction of plasma proteins in the annual cycle of cyprinidae, Biochemistry (Moscow), 2015, vol. 80, no. 2, pp. 208–218.

    CAS  PubMed  Google Scholar 

  4. Andreeva, A.M., Lamash, N.E., Serebryakova, M.V., and Ryabtseva, I.P., Seasonal dynamics in capillary filtration of plasma proteins in eastern redfins of the genus Tribolodon (Cyprinidae), J. Ichthyol., 2015, vol. 55, no. 5, pp. 723–733.

    Article  Google Scholar 

  5. Andreeva, A.M., Ryabtseva, I.P., and Fedorov, R.A., Organization of plasma protein complexes in bony fish, Tr.Inst. Biol. Vnutr. Vod, Ross. Akad. Nauk: Fiziol. Biokhim. Vodn. Zhivotn., 2015, vol. 72, no. 75, pp. 5–16.

    Google Scholar 

  6. Detlaf, A.A. and Yavorskii, B.M., Kurs fiziki: Uchebnoye posobiye dlya vuzov (Course of Physics: A Study Guide for Higher Education Institutions), Moscow: Vysshaya Shkola, 1989.

  7. Kirpichnikov, V.S., Genetika i selektsiya ryb (Fish Genetics and Selection), Leningrad: Nauka, 1987.

  8. Kuz’min, E.V. and Kuz’mina, O.Yu., Analysis of variability of blood serum albumins in Russian (Acipenser gueldenstaedtii) and Siberian (Acipenser baerii) sturgeon, Vopr. Rybolov., 2012, vol. 13, no. 1(49), pp. 107–124.

  9. Ozernyuk, N.D. and Myuge, N.S., Large-scale genome duplications and paralog divergence in fish, Russ. J. Genet., 2013, vol. 49, no. 1, pp. 63–69.

    Article  CAS  Google Scholar 

  10. Titov, V.N., The becoming in phylogenesis of transfer in intercellular medium and active absorption of polyenoic fatty acids by cells sequentially of high density lipoproteins, low density lipoproteins and high density apoE-lipoproteins, Klin. Lab. Diagn., 2015, vol. 60, no. 6, pp. 4–14.

    PubMed  Google Scholar 

  11. Khlebovich, V.V., Kriticheskaya solenost’ biologicheskikh protsessov (Critical Salinity of Biological Processes), Leningrad: Nauka, 1974.

  12. Shul’man, G.E., Elementy fiziologii i biokhimii obshchego i aktivnogo obmena u ryb (Elements of Physiology and Biochemistry of General and Active Metabolism in Fish), Kiev: Naukova Dumka, 1978.

  13. Anderson, N.L., Polanski, M., Pieper, R., et al., The human plasma proteome: a nonredundant list developed by combination of four separate sources, Mol. Cell. Proteomics, 2004, vol. 3, pp. 311–326.

    Article  CAS  PubMed  Google Scholar 

  14. Andreeva, A.M., Structural and Functional Organization of Fish Blood Proteins, New York: Nova Science, 2012.

    Google Scholar 

  15. Andreeva, A.M., Serebryakova, M.V., and Lamash, N.E., Oligomeric protein complexes of apolipoproteins stabilize the internal fluid environment of organism in redfins of the Tribolodon genus [Pisces; Cypriniformes, Cyprinidae], Comp. Biochem. Physiol., Part D: Genomics Proteomics, 2017, vol. 22, pp. 90–97.

    CAS  Google Scholar 

  16. Anguizola, J., Matsuda, R., Barnaby, O.S., et al., Review: Glycation of human serum albumin, Clin. Chim. Acta, 2013, vol. 425, pp. 64–76.

    Article  CAS  PubMed  Google Scholar 

  17. Aoyagi, Y., Ikenaka, T., and Ichida, F., alpha-Fetoprotein as a carrier protein in plasma and its bilirubin-binding ability, Cancer Res., 1979, vol. 39, no. 9, pp. 3571–3574.

    CAS  PubMed  Google Scholar 

  18. Arrese, E.L., Canavoso, L.E., Jouni, Z.E., et al., Lipid storage and mobilization in insects: current status and future directions, Insect Biochem. Mol. Biol., 2001, vol. 1, no. 1, pp. 7–17.

    Article  Google Scholar 

  19. Babaei, F., Ramalingam, R., Tavendale, A., et al., Novel blood collection method allows plasma proteome analysis from single zebrafish, J. Proteome Res., 2013, vol. 12, no. 4, pp. 1580–1590.

    Article  CAS  PubMed  Google Scholar 

  20. Babin, P.J., Plasma lipoprotein and apolipoprotein distribution as a function of density in the rainbow trout (Salmo gairdneri), Biochem. J., 1987, vol. 246, no. 2, pp. 425–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Babin, P.J. and Vernier, J.M., Plasma lipoproteins in fish, J. Lipid Res., 1989, vol. 30, pp. 467–489.

    CAS  PubMed  Google Scholar 

  22. Bernthaler, P., Epping, K., Schmitz, G., et al., Molecular characterization of EmABP, an apolipoprotein A-I binding protein secreted by the Echinococcus multilocularis metacestode, Infect. Immun., 2009, vol. 77, no. 12, pp. 5564–5571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Borhani, D.W., Rogers, D.P., Engler, J.A., and Brouillette, C.G., Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation, Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, no. 23, pp. 12291–12296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Braasch, I., Gehrke, A.R., Smith, J.J., et al., The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons, Nat. Genet., 2016, vol. 48, no. 4, pp. 427–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Braceland, M., Bickerdike, R., Tinsley, J., et al., The serum proteome of Atlantic salmon, Salmo salar, during pancreas disease (PD) following infection with salmonid alphavirus subtype 3 (SAV3), J. Proteomics, 2013, vol. 94, pp. 423–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Byrnes, L. and Gannon, F., Atlantic salmon (Salmo salar) serum albumin: cDNA sequence, evolution, and tissue expression, DNA Cell Biol., 1990, vol. 9, no. 9, pp. 647–655.

    Article  CAS  PubMed  Google Scholar 

  27. Canavoso, L.E., Jouni, Z.E., Karnas, K.J., et al., Fat metabolism in insects, Annu. Rev. Nutr., 2001, vol. 21, pp. 23–46.

    Article  CAS  PubMed  Google Scholar 

  28. Chen, J., Shi, H., Hu, H.Q., et al., Apolipoprotein A-I, a hyperosmotic adaptation-related protein in ayu (Plecoglossus altivelis), Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2009, vol. 152, pp. 196–201.

    Article  CAS  Google Scholar 

  29. Choudhury, M., Yamada, S., Komatsu, M., et al., Homologue of mammalian apolipoprotein A-II in non-mammalian vertebrates, Acta Biochim. Biophys. Sin., 2009, vol. 41, no. 5, pp. 370–378.

    Article  CAS  PubMed  Google Scholar 

  30. Concha, M.I., Molina, S., Oyarzún, C., et al., Local expression of apolipoprotein A-I gene and a possible role for HDL in primary defence in the carp skin, Fish Shellfish Immunol., 2003, vol. 14, no. 3, pp. 259–273.

    Article  CAS  PubMed  Google Scholar 

  31. Concha, M.I., Smith, V.J., Castro, K., et al., Apolipoproteins A-I and A-II are potentially important effectors of innate immunity in the teleost fish Cyprinus carpio, Eur. J. Biochem., 2004, vol. 271, no. 14, pp. 2984–2990.

    Article  CAS  PubMed  Google Scholar 

  32. Curry, S., Mandelkow, H., Brick, P., and Franks, N., Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites, Nat. Struct. Biol., 1998, vol. 5, no. 9, pp. 827–835.

    Article  CAS  PubMed  Google Scholar 

  33. De Smet, H., Blust, R., and Moens, L., Absence of albumin in the plasma of the common carp Cyprinus carpio: binding of fatty acids to high density lipoprotein, Fish Physiol. Biochem., 1998, vol. 19, no. 1, pp. 71–81.

    Article  CAS  Google Scholar 

  34. Deutsch, H.F. and McShan, W.H., Biophysical studies of blood plasma proteins; electrophoretic studies of the blood serum proteins of some lower animals, J. Biol. Chem., 1949, vol. 180, no. 1, pp. 219–234.

    CAS  PubMed  Google Scholar 

  35. Dietrich, M.A., Arnold, G.J., Nynca, J., et al., Characterization of carp seminal plasma proteome in relation to blood plasma, J. Proteomics, 2014, vol. 98, pp. 218–232.

    Article  CAS  PubMed  Google Scholar 

  36. Dietrich, M.A., Nynca, J., Adamek, M., et al., Expression of apolipoprotein A-I and A-II in rainbow trout reproductive tract and their possible role in antibacterial defence, Fish Shellfish Immunol., 2015, vol. 45, pp. 750–756.

    Article  CAS  PubMed  Google Scholar 

  37. Dziegielewska, K.M., Evans, C.A., Fossan, G., et al., Proteins in cerebrospinal fluid and plasma of fetal sheep during development, J. Physiol., 1980, vol. 300, pp. 441–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Evans, D.H. and Claiborne, J.B., Osmotic and ionic regulation in fishes, in Osmotic and Ionic Regulation: Cells and Animals, Evans, D.H., Ed., Boca Raton, Fla.: CRC, 2009, pp. 295–366.

    Google Scholar 

  39. Ghuman, J., Zunszain, P.A., Petitpas, I., et al., Structural basis of the drug-binding specificity of human serum albumin, J. Mol. Biol., 2005, vol. 353, no. 1, pp. 38–52.

    Article  CAS  PubMed  Google Scholar 

  40. Gray, J.E. and Doolittle, R.F., Characterization, primary structure, and evolution of lamprey plasma albumin, Protein Sci., 1992, vol. 1, no. 2, pp. 289–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He, X.M. and Carter, D.C., Atomic structure and chemistry of human serum albumin, Nature, 1992, vol. 358, no. 6383, pp. 209–215.

    Article  CAS  PubMed  Google Scholar 

  42. Halstead, L.B., The vertebrate invasion of fresh water, Philos. Trans. R. Soc., B, 1985, vol. 309, pp. 243–258.

  43. Harel, A., Fainaru, M., Rubinstein, M., et al., Fish apolipoprotein-A-I has heparin binding activity: implication for nerve regeneration, J. Neurochem., 1990, vol. 55, no. 4, pp. 1237–1243.

    Article  CAS  PubMed  Google Scholar 

  44. Ibdah, J.A., Krebs, K.E., and Phillips, M.C., The surface properties of apolipoproteins A-I and A-II at the lipid/water interface, Biochim. Biophys. Acta, 1989, vol. 1004, no. 3, pp. 300–308.

    Article  CAS  PubMed  Google Scholar 

  45. Jerkovic, L., Voegele, A.F., Chwatal, S., et al., Afamin is a novel human vitamin E-binding glycoprotein characterization and in vitro expression, J. Proteome Res., 2005, vol. 4, no. 3, pp. 889–899.

    Article  CAS  PubMed  Google Scholar 

  46. Keyvanfar, A., Serologie et immunologie de deux especes de thonides (Germo alalunga Gmelin et Thunnus thynnus Linne) de l’Atlantique et de la Mediterranee, Rev. Trav. Inst. Peches Marit., 1962, vol. 26, no. 4, pp. 407–456.

    Google Scholar 

  47. Koltowska, K., Betterman, K.L., Harvey, N.L., and Hogan, B.M., Getting out and about: the emergence and morphogenesis of the vertebrate lymphatic vasculature, Development, 2013, vol. 140, pp. 1857–1870.

    Article  CAS  PubMed  Google Scholar 

  48. Kragh-Hansen, U., Structure and ligand binding properties of human serum albumin, Dan. Med. Bull., 1990, vol. 37, no. 1, pp. 57–84.

    CAS  PubMed  Google Scholar 

  49. Kültz, D., Physiological mechanisms used by fish to cope with salinity stress, J. Exp. Biol., 2015, vol. 218, pp. 1907–1914.

  50. Kültz, D., Li, J., Paguio, D., Pham, T., et al., Population-specific renal proteomes of marine and freshwater three-spined sticklebacks, J. Proteomics, 2016, vol. 135, pp. 112–131.

  51. Lamant, M., Smih, F., Harmancey, R., et al., ApoO, a novel apolipoprotein, is an original glycoprotein up-regulated by diabetes in human heart, J. Biol. Chem., 2006, vol. 281, no. 47, pp. 36289–36302.

    Article  CAS  PubMed  Google Scholar 

  52. Larsson, M., Pettersson, T., and Carlström, A., Thyroid hormone binding in serum of 15 vertebrate species: isolation of thyroxine-binding globulin and prealbumin analogs, Gen. Comp. Endocrinol., 1985, vol. 58, no. 3, pp. 360–375.

    Article  CAS  PubMed  Google Scholar 

  53. Levitt, D. and Levitt, M., Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements, Int. J. Gen. Med., 2016, vol. 9, pp. 229–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, L., Chen, J., Mishra, V., et al., Double belt structure of discoidal high density lipoproteins: molecular basis for size heterogeneity, J. Mol. Biol., 2004, vol. 343, pp. 1293–1311.

    Article  CAS  PubMed  Google Scholar 

  55. Li, C., Tan, X.F., Lim, T.K., et al., Comprehensive and quantitative proteomic analyses of zebrafish plasma reveals conserved protein profiles between genders and between zebrafish and human, Sci. Rep., 2016, vol. 6, no. 24329, pp. 1–15.

    Article  CAS  Google Scholar 

  56. Li, S., Cao, Y., and Geng, F., Genome-wide identification and comparative analysis of albumin family in vertebrates, Evol. Bioinf. Online, 2017, vol. 13, pp. 1–6.

    Article  CAS  Google Scholar 

  57. Lichenstein, H.S., Lyons, D.E., Wurfel, M.M., et al., Afamin is a new member of the albumin, alpha-fetoprotein, and vitamin D-binding protein gene family, J. Biol. Chem., 1994, vol. 269, no. 27, pp. 18149–18154.

    CAS  PubMed  Google Scholar 

  58. Liotta, L.A. and Petricoin, E.F., Serum peptidome for cancer detection: spinning biologic trash into diagnostic gold, J. Clin. Invest., 2006, vol. 116, no. 1, pp. 26–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Low, C.F., Shamsudin, M.N., Chee, H.Y., et al., Putative apolipoprotein A-I, natural killer cell enhancement factor and lysozyme g are involved in the early immune response of brown-marbled grouper, Epinephelus fuscoguttatus, Forskal, to Vibrio alginolyticus, J. Fish Dis., 2013, vol. 37, no. 8, pp. 693–701.

    Article  CAS  PubMed  Google Scholar 

  60. Lucitt, M.B., Price, T.S., Pizarro, A., et al., Analysis of the zebrafish proteome during embryonic development, Mol. Cell. Proteomics, 2008, vol. 7, no. 5, pp. 981–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lund-Katz, S. and Phillips, M., High density lipoprotein structure–function and role in reverse cholesterol transport, Subcell. Biochem., 2010, vol. 51, pp. 183–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Magnadóttir, B. and Lange, S., Is Apolipoprotein A-I a regulating protein for the complement system of cod (Gadus morhua L.)?, Fish Shellfish Immunol., 2004, vol. 16, no. 2, pp. 265–269.

  63. Majorek, K.A., Porebski, P.J., Dayal, A., et al., Structural and immunologic characterization of bovine, horse, and rabbit serum albumins, Mol. Immunol., 2012, vol. 52, nos. 3–4, pp. 174–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Malik, S., Fu, L., Juras, D.J., et al., Common variants of the vitamin D binding protein gene and adverse health outcomes, Crit. Rev. Clin. Lab. Sci., 2013, vol. 50, no. 1, pp. 1–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Metcalf, V., Brennan, S., Chambers, G., and George, P., The albumins of Chinook salmon (Oncorhynchus tshawytscha) and brown trout (Salmo trutta) appear to lack a propeptide, Arch. Biochem. Biophys., 1998, vol. 350, no. 2, pp. 239–244.

    Article  CAS  PubMed  Google Scholar 

  66. Metcalf, V.J., Brennan, S.O., Chambers, G.K., and George, P.M., The albumin of the brown trout (Salmo trutta) is a glycoprotein, Biochim. Biophys. Acta, 1998, vol. 1386, no. 1, pp. 90–96.

    Article  CAS  PubMed  Google Scholar 

  67. Metcalf, V.J., Brennan, S.O., and George, P.M., The Antarctic toothfish (Dissostichus mawsoni) lacks plasma albumin and utilises high density lipoprotein as its major palmitate binding protein, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 1999, vol. 124, no. 2, pp. 147–155.

    Article  CAS  Google Scholar 

  68. Metcalf, V.J., George, P.M., and Brennan, S.O., Lungfish albumin is more similar to tetrapod than to teleost albumins: purification and characterization of albumin from the Australian lungfish, Neocaratodus forsteri, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2007, vol. 147, no. 3, pp. 428–437.

    Google Scholar 

  69. Michelis, R., Sela, S., Zeitun, T., et al., Unexpected normal colloid osmotic pressure in clinical states with low serum albumin, PLoS One, 2016, vol. 11, no. 7, art. ID e0159839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Minchiotti, L., Galliano, M., Kragh-Hansen, U., and Peters, T., Jr., Mutations and polymorphisms of the gene of the major human blood protein, serum albumin, Hum. Mutat., 2008, vol. 29, no. 8, pp. 1007–1016.

    Article  CAS  PubMed  Google Scholar 

  71. Moore, D.H., Species differences in serum protein patterns, J. Biol. Chem., 1945, vol. 161, pp. 21–32.

    CAS  PubMed  Google Scholar 

  72. Moreno, F.J. and Clemente, A., 2S albumin storage proteins: What makes them food allergens?, Open Biochem. J., 2008, vol. 2, pp. 16–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Morris, B., The proteins and lipids of the plasma of some species of Australian fresh and salt water fish, J. Cell. Comp. Physiol., 1959, vol. 54, no. 3, pp. 221–230.

    Article  CAS  PubMed  Google Scholar 

  74. Murata, M., Sugimoto, C., Kodama, H., and Onuma, M., N-terminal amino acid sequence of a 28 kDa major serum high density lipoprotein of the rainbow trout Oncorhynchus mykiss, Jpn. J. Vet. Res., 1994, vol. 42, no. 2, pp. 89–94.

    CAS  PubMed  Google Scholar 

  75. Nguyen, M. and Kurtz, I., Quantitative interrelationship between Gibbs-Donnan equilibrium, osmolality of body fluid compartments, and plasma water sodium concentration, J. Appl. Physiol., 2006, vol. 100, pp. 1293–1300.

    Article  CAS  PubMed  Google Scholar 

  76. Nielsen, U.N., Wall, D.H., Adams, B.J., et al., The ecology of pulse events: insights from an extreme climatic event in a polar desert ecosystem, Ecosphere, 2012, vol. 3, no. 2, pp. 1–15.

    Article  Google Scholar 

  77. Ndiaye, D., Katoh, H., Ge, Y.P., et al., Monoclonal antibodies to plasma high density lipoprotein (HDL) of eel (Anguilla japonica), Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2000, vol. 125, no. 4, pp. 473–482.

    Article  CAS  Google Scholar 

  78. Noël, E.S., Reis, M., Arain, Z., and Ober, E.A., Analysis of the Albumin/α-Fetoprotein/Afamin/Group specific component gene family in the context of zebrafish liver differentiation, Gene Expression Patterns, 2010, vol. 10, no. 6, pp. 237–243.

  79. Olson, K.R., Kinney, D.W., Dombkowski, R.A., and Duff, D.W., Transvascular and intravascular fluid transport in the rainbow trout: revisiting Starling’s forces, the secondary circulation and interstitial compliance, J. Exp. Biol., 2003, vol. 206, pp. 457–467.

    Article  PubMed  Google Scholar 

  80. Otis, J., Zeituni, E.M., Thierer, J.H., et al., Zebrafish as a model for apolipoprotein biology: comprehensive expression analysis and a role for ApoA-IV in regulating food intake, Dis. Models Mech., 2015, vol. 8, no. 3, pp. 295–309.

    Article  CAS  Google Scholar 

  81. Otterbein, L.R., Cosio, C., Graceffa, P., and Dominguez, R., Crystal structures of the vitamin D-binding protein and its complex with actin: structural basis of the actin-scavenger system, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, no. 12, pp. 8003–8008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pasquier, J., Cabau, C., Nguyen, T., et al., Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database, BMC Genomics, 2016, vol. 17, no. 368, pp. 1–10.

    Article  CAS  Google Scholar 

  83. Power, D.M., Elias, N.P., Richardson, S.J., et al., Evolution of the thyroid hormone-binding protein, transthyretin, Gen. Comp. Endocrinol., 2000, vol. 119, pp. 241–255.

    Article  CAS  PubMed  Google Scholar 

  84. Pownall, H.J., Hickson, D., and Gotto, A.M., Jr., Thermodynamics of lipid-protein association. The free energy of association of lecithin with reduced and carboxymethylated apolipoprotein A-II from human plasma high density lipoprotein, J. Biol. Chem., 1981, vol. 256, no. 19, pp. 9849–9854.

    CAS  PubMed  Google Scholar 

  85. Saber, M.A., Stöckbauer, P., Morávek, L., and Meloun, B., Disulfide bonds in human serum albumin, Collect. Czech. Chem. Commun., 1977, vol. 42, pp. 564–579.

    Article  CAS  Google Scholar 

  86. Saito, H., Lund-Katz, S., and Phillips, M., Contributions of domain structure and lipid interaction to the functionality of exchangeable human apolipoproteins, Prog. Lipid Res., 2004, vol. 43, pp. 350–380.

    Article  CAS  PubMed  Google Scholar 

  87. Salem, M., Xiao, C., Womack, J., et al., A microRNA repertoire for functional genome research in rainbow trout (Oncorhynchus mykiss), Mar. Biotechnol., 2010, vol. 12, no. 4, pp. 410–429.

    Article  CAS  PubMed  Google Scholar 

  88. Schoentgen, F., Metz-Boutigue, M.H., Jollès, J., et al., Complete amino acid sequence of human vitamin D-binding protein (group-specific component): evidence of a three-fold internal homology as in serum albumin and alpha-fetoprotein, Biochim. Biophys. Acta, 1986, vol. 871, no. 2, pp. 189–198.

    Article  CAS  PubMed  Google Scholar 

  89. Schulz, G.E. and Schirmer, R.H., Principles of Protein Structure, New York: Springer-Verlag, 1979.

    Book  Google Scholar 

  90. Segrest, J.P., Jones, M.K., Klon, A.E., et al., A detailed molecular belt model for apolipoprotein A-I in discoidal high density lipoprotein, J. Biol. Chem., 1999, vol. 274, no. 45, pp. 31755–31758.

    Article  CAS  PubMed  Google Scholar 

  91. Sharony, R., Zadik, I., and Parvari, R., Congenital deficiency of alpha feto-protein, Eur. J. Hum. Genet., 2004, vol. 12, no. 10, pp. 871–874.

    Article  CAS  PubMed  Google Scholar 

  92. Silva, R.A., Huang, R., Morris, J., et al., Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 34, pp. 12176–12181.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tarallo, A., Angelini, C., Sanges, R., et al., On the genome base composition of teleosts: the effect of environment and lifestyle, BMC Genomics, 2016, vol. 17, no. 173, pp. 2–10.

    Article  CAS  Google Scholar 

  94. Therriault, D.G. and Taylor, J.F., Dimerization of serum albumin on extraction with an organic solvent, Biochem. Biophys. Res. Commun., 1960, vol. 3, pp. 560–565.

    Article  CAS  PubMed  Google Scholar 

  95. Tipsmark, C.K., Jørgensen, C., Brande-Lavridsen, N., et al., Effects of cortisol, growth hormone and prolactin on gill claudin expression in Atlantic salmon, Gen. Comp. Endocrinol., 2009, vol. 163, no. 3, pp. 270–277.

    Article  CAS  PubMed  Google Scholar 

  96. Tiselius, A., Electrophoresis of serum globulin: Electrophoretic analysis of normal and immune sera, Biochem. J., 1937, vol. 31, no. 9, pp. 1464–1477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tsai, P.L., Chen, C.H., Huang, C.J., et al., Purification and cloning of an endogenous protein inhibitor of carp nephrosin, an astacin metalloproteinase, J. Biol. Chem., 2004, vol. 279, no. 12, pp. 11146–11155.

    Article  CAS  PubMed  Google Scholar 

  98. Vaisar, T., Proteomics investigations of HDL: challenges and promise, Curr. Vasc. Pharmacol., 2012, vol. 10, pp. 410–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wicher, K.B. and Fries, E., Haptoglobin, a hemoglobin-binding plasma protein, is present in bony fish and mammals but not in frog and chicken, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, no. 11, pp. 4168–4173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xu, Y. and Ding, Z., N-terminal sequence and main characteristics of Atlantic salmon (Salmo salar) albumin, Prep. Biochem. Biotechnol., 2005, vol. 35, no. 4, pp. 283–290.

    Article  CAS  PubMed  Google Scholar 

  101. Zhang, D., Homology between DUF784, DUF1278 domains and the plant prolamin superfamily typifies evolutionary changes of disulfide bonding patterns, Cell Cycle, 2009, vol. 8, no. 20, pp. 3428–3430.

    Article  CAS  PubMed  Google Scholar 

  102. Zhang, J., Lang, L., Zhu, Z., et al., Clinical translation of an albumin-binding PET Radiotracer 68Ga-NEB, J. Nucl. Med., 2015, vol. 56, no. 10, pp. 1609–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zilić, S.M., Barać, M.B., Pesić, M.B., et al., Characterization of proteins from kernel of different soybean varieties, J. Sci. Food Agric., 2011, vol. 91, no. 1, pp. 60–67.

  104. Teramoto, T., Structure and function of apolipoproteins, Nihon Rinsho, 1994, vol. 52. no. 12, pp. 3100–3107.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was carried out within the framework of the Governmental Assignment (no. AAAA-A18-118012690123-4) and supported by the Russian Foundation for Basic Research (project no. 16-04-00120-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Andreeva.

Ethics declarations

The author declares that she has no conflict of interest. This article does not contain any studies involving animals or human participants performed by the author.

Additional information

Translated by E. Shvetsov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, A.M. The Strategies of Organization of the Fish Plasma Proteome: with and without Albumin. Russ J Mar Biol 45, 263–274 (2019). https://doi.org/10.1134/S1063074019040023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074019040023

Keywords:

Navigation