Skip to main content
Log in

Structural features of the low-molecular-weight plasma fraction in far eastern redfins of the genus Tribolodon and other cyprinid fishes

  • Comparative Biochemistry
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The organization of the low-molecular fraction (LMF) of proteins from fish plasma was studied in Far Eastern redfins of the genus Tribolodon and other representatives of the family Cyprinidae. The common principle of the organization of the plasma LMF was established. According to this principle, the LMF includes two subfractions, one of which consists of oligomeric and the other of monomeric proteins. During the pre-spawning period, a decrease in the apparent molecular weight of proteins as a result of changes in their oligomeric structure was observed in the former subfraction; a reduction of the heterogeneity of the proteins occurred in the latter one. The analysis of these rearrangements allows one to differentiate two main types of the LMF: “basic” and “plastic.” The former type is characterized by a low level of metabolic processes; the latter one, by their activation during the pre-spawning period. By using MALDI mass spectrometry, polymeric forms of apolipoproteins, fetuin, and albumin-like protein were identified within the oligomeric subfraction; hemopexin and inhibitors of proteinases were found within the monomeric subfraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrov, V.Ya., Reaktivnost’ kletok i belki (Cell Reactivity and Proteins), Leningrad: Nauka, 1985.

    Google Scholar 

  2. Ali Khan, M.W., Rasheed, Z., Ali Khan, W., and Ali, R., Biochemical, biophysical, and thermodynamic analysis of in vitro glycated human serum albumin, Biochemistry (Moscow), 2007, vol. 72, no. 2, pp. 146–152.

    Article  CAS  Google Scholar 

  3. Andreeva, A.M., Identification of some proteins of blood tissue fluid in the fish with enciphered genome, J. Evol. Biochem. Physiol., 2013, vol. 49, no. 6, pp. 551–561.

    Article  CAS  Google Scholar 

  4. Andreeva, A.M. and Fedorov, R.A., Features of the organization of low-molecular weight proteins from the blood and tissue fluid of the Common Stingray Dasyatis pastinaca (Chondroichthyes: Trygonidae), Russ. J. Mar. Biol., 2010, vol. 36, no. 6, pp. 469–472.

    Article  CAS  Google Scholar 

  5. Gaal, Electrophoresis in the Separation of Biological Micromolecules, Chichester: Wiley, 1980.

    Google Scholar 

  6. Kirpichnikov, V.S., Genetika i selektsiya ryb (Genetics and Selection of Fish), Leningrad: Nauka, 1987.

    Google Scholar 

  7. Novikov, G.G., Rost i energetika razvitiya kostistykh ryb v rannem ontogeneze (Growth and Energetics of Development of Bony Fish in Early Ontogenesis), Moscow: Editorial URSS, 2000.

    Google Scholar 

  8. Sakun, O.F. and Butskaya, N.A., Opredeleniye stadii zrelosti i izucheniye polovykh produktov ryb (Determination of Maturity Stage and Study of Sex Products of Fish), Murmansk: Polar. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 1968.

    Google Scholar 

  9. Tinaeva, E.A., Markovich, L.G., Konkina, V.V., and Semikrasova, E.A., On the opportunity to use the blood protein polymorphism as an indicator of selection in fur-bearing animal farming, Vestn. Vavilov. O-va Genet. Selekts., 2007, vol. 1, no. 1, pp. 122–130.

    Google Scholar 

  10. White, A., Handler, P., Smith, E.L. et al., Principles of Biochemistry, in 3 vols., New York: McGraw-Hill, 1978.

    Google Scholar 

  11. Schmidt-Nielsen, K., Animal Physiology. Adaptation and Environment, in 2 vols., Cambridge: Cambridge Univ. Press, 1979.

    Google Scholar 

  12. Anderson, L. and Anderson, N.G., High resolution two-dimensional electrophoresis of human plasma proteins, Proc. Natl. Acad. Sci. U.S.A., 1977, vol. 74, pp. 5421–5425.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Anderson, N.L. and Anderson, N.G., The human plasma proteome: history, character, and diagnostic prospects, Mol. Cell. Proteomics, 2002, vol. 1, pp. 845–867.

    Article  CAS  PubMed  Google Scholar 

  14. Anderson, N.L., Polanski, M., Pieper, R. et al., The human plasma proteome: a nonredundant list developed by combination of four separate sources, Mol. Cell. Proteomics, 2004, vol. 3, pp. 311–326.

    Article  CAS  PubMed  Google Scholar 

  15. Andreeva, A.M., Structural and Functional Organization of Fish Blood Proteins, New York: Nova Sci. Pub., 2012.

    Google Scholar 

  16. Armengaud, J., Trapp, J., Pible, O. et al., Non-model organisms, a species endangered by proteogenomics, J. Proteomics, 2014, vol. 105, pp. 5–18.

    Article  CAS  PubMed  Google Scholar 

  17. Babaei, F., Ramalingam, R., Tavendale, A. et al., Novel blood collection method allows plasma proteome analysis from single zebrafish, J. Proteome Res., 2013, vol. 12, no. 4, pp. 1580–1590. doi 10.1021/pr3009226

    Article  CAS  PubMed  Google Scholar 

  18. Bouwman, F.G., Ross, B., Rubio-Aliaga, I. et al., 2D-electrophoresis and multiplex immunoassay proteomic analysis of different body fluids and cellular components reveal known and novel markers for extended fasting, BMC Med. Genomics, 2011, vol. 4, no. 24. doi: 10.1186/1755-8794-4-24

    Google Scholar 

  19. Braceland, M., Bickerdike, R., Tinsley, J. et al., The serum proteome of Atlantic salmon, Salmo salar, during pancreas disease (PD) following infection with salmonid alphavirus subtype 3 (SAV3), J. Proteomics, 2013, vol. 94, pp. 423–436, doi 10.1016/j.jprot.2013.10.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Creighton, T.E., Electrophoretic analysis of the unfolding of proteins by urea, J. Mol. Biol., 1979, vol. 129, pp. 235–264.

    Article  CAS  PubMed  Google Scholar 

  21. Davis, B.J., Disc-electrophoresis. II. Method and application to human serum proteins, Ann. N.Y. Acad. Sci., 1964, vol. 121, pp. 404–427.

    Article  CAS  PubMed  Google Scholar 

  22. Deutsch, H.F. and McSchan, W.H., Biophysical studies of blood plasma proteins. XII. Electrophoretic studies of the blood serum proteins of some lower animals, J. Biol. Chem., 1949, vol. 180, pp. 219–234.

    CAS  PubMed  Google Scholar 

  23. Dietrich, M.A., Arnold, G.J., Nynca, J. et al., Characterization of carp seminal plasma proteome in relation to blood plasma, J. Proteomics, 2014, vol. 98, pp. 218–232.

    Article  CAS  PubMed  Google Scholar 

  24. Flouriot, G., Ducouret, B., Byrnes, L. et al., Transcriptional regulation of expression of the rainbow trout albumin gene by estrogen, J. Mol. Endocrinol., 1998, vol. 20, no. 3, pp. 355–362.

    Article  CAS  PubMed  Google Scholar 

  25. Kopperschläger, G., Diezel, W., Bierwagen, B., and Hofmann, E., Molekulargewichtsbestimmungen durch Polyacrylamidgel-Elektrophorese unter Verwendung eines linearen Gelgradienten, FEBS Lett., 1969, vol. 5, pp. 221–227.

    Article  PubMed  Google Scholar 

  26. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, no. 5259, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  27. Low, C.F., Shamsudin, M.N., Chee, H.Y. et al., Putative apolipoprotein A-I, natural killer cell enhancement factor and lysozyme g are involved in the early immune response of brown-marbled grouper, Epinephelus fuscoguttatus, Forskal, to Vibrio alginolyticus, J. Fish Dis., 2013. doi 10.1111/jfd.12153

    Google Scholar 

  28. Lucitt, M.B., Price, T.S., Pizarro, A. et al., Analysis of the zebrafish proteome during embryonic development, Mol. Cel. Proteomics, 2008, vol. 7, no. 5, pp. 981–994.

    Article  CAS  Google Scholar 

  29. Luczak, M., Formanowicz, D., Pawliczak, E. et al., Chronic kidney disease-related atherosclerosis-proteomic studies of blood plasma, Proteome Sci., 2011, vol. 9, no. 25, doi 10.1186/1477-5956-9-25

    Google Scholar 

  30. Májek, P., Reicheltová, Z., Suttnar, J. et al., Plasma proteome changes in cardiovascular disease patients: novel isoforms of apolipoprotein A1, J. Transl. Med., 2011, vol. 9, pp. 84.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Májek, P., Riedelová-Reicheltová, Z., Suttnar, J., and Dyr, J.E., Staining of proteins for 2D SDS-PAGE using Coomassie Blue?speed versus sensitivity? Electrophoresis, 2013, vol. 34, no. 13, pp. 1972–1975.

    Article  PubMed  Google Scholar 

  32. Metcalf, V.J., Brennan, S.O., Chambers, G.K. et al., The albumin of the brown trout (Salmo trutta) is a glycoprotein, Biochim. Biophys. Acta, 1998, vol. 1386, no. 1, pp. 90–96.

    Article  CAS  PubMed  Google Scholar 

  33. Metcalf, V., Brennan, St., and Georg, P., Using serum albumin to infer vertebrate phylogenies, Appl. Bioinform., 2003, vol. 2, no. 3, pp. 97–107.

    Google Scholar 

  34. Metcalf, V.J., George, P.M., and Brennan, S.O., Lungfish albumin is more similar to tetrapod than to teleost albumins: purification and characterization of albumin from Australian lungfish, Neoceratodes forsteri, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2007, vol. 147, no. 3, pp. 428–437.

    Article  Google Scholar 

  35. Minchiotti, L., Galliano, M., Kragh-Hansen, U. et al., Mutations and polymorphisms of the gene of the major human blood protein, serum albumin, Hum. Mutat., 2008, vol. 29, no. 8, pp. 1007–1016.

    Article  CAS  PubMed  Google Scholar 

  36. Moore, D.H., Species differences in serum protein patterns, J. Biol. Chem., 1945, vol. 161, pp. 21–32.

    CAS  PubMed  Google Scholar 

  37. Ornstein, L., Disc-electrophoresis?I. Background and theory, Ann. N.Y. Acad. Sci., 1964, vol. 121, pp. 321–349.

    Article  CAS  PubMed  Google Scholar 

  38. Palmour, R.M. and Sutton, H.E., Vertebrate transferrins molecular weight, clinical composition and iron binding studies, Biochemistry, 1971, vol. 10, pp. 4026–4032.

    Article  CAS  PubMed  Google Scholar 

  39. Papakostas, S., Vasemägi, A., Himberg, M. et al., Proteome variance differences within populations of European whitefish (Coregonus lavaretus) originating from contrasting salinity environments, J. Proteomics, 2014, vol. 105, pp. 144–150.

    Article  CAS  PubMed  Google Scholar 

  40. Sickmann, A., Dormeyer, W., Wortelkamp, S. et al., Towards a high resolution separation of human cerebrospinal fluid, J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci., 2002, vol. 771, nos. 1–2, pp. 167–196.

    Article  CAS  Google Scholar 

  41. Tiselius, A., Electrophoresis of serum globulin: electrophoretic analysis of normal and immune sera, Biochem. J., 1937, vol. 31, pp. 1464–1472.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Tsai, P.L., Chen, C.H., Huang, C.J. et al., Purification and cloning of an endogenous protein inhibitor of carp nephrosin, an astacin metalloproteinase, J. Biol. Chem., 2004, vol. 279, no. 12, pp. 11146–11155.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Andreeva.

Additional information

Original Russian Text © A.M. Andreeva, M.V. Serebryakova, N.E. Lamash, R.A. Fedorov, I.P. Ryabtseva, 2015, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, A.M., Serebryakova, M.V., Lamash, N.E. et al. Structural features of the low-molecular-weight plasma fraction in far eastern redfins of the genus Tribolodon and other cyprinid fishes. Russ J Mar Biol 41, 60–68 (2015). https://doi.org/10.1134/S1063074015010022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074015010022

Keywords

Navigation