Skip to main content
Log in

The antioxidant potential of dominant macroalgae species from the Sea of Japan

  • Algology
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The range of variation in the key components of enzymatic and low-molecular-weight antioxidant systems (AOSs) is determined for 17 dominant species of macroalgae from the Sea of Japan waters that are exposed to minimal anthropogenic pressure, during the period of their active vegetative growth. The maximum activity of superoxide dismutase, glutathione reductase, ascorbate peroxidase, and the highest content of glutathione and carotenoids are observed in members of the phylum Chlorophyta. The studied algae display a wide phenotypic variability in terms of catalase activity and ascorbate abundance in their tissues. Differences between species in the constitutive capacity of AOS are found within the systematic phyla. It is shown for the first time that warm-water algae of temperate latitudes have a lower content of low-molecular-weight antioxidants and a higher activity of key antioxidant enzymes compared to those recorded for cold-temperate species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belotsitsenko, E.S., Resistance of marine macroalgae to photooxidative stress under conditions of fluctuating temperature, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Vladivostok, 2015.

    Google Scholar 

  2. Li, B.D., Separation, identification, and quantification of photosynthetic pigments of macrobenthic algae, Ekologicheskiye aspekty fotosinteza morskikh makrovodoroslei (Ecological Aspects of Photosynthesis of Marine Macroalgae), Vladivostok: Dal’nevost. Nauchn. Tsentr, Akad. Nauk SSSR, 1978, pp. 38–54.

    Google Scholar 

  3. Li, B.D. and Titlyanov, E.A., Adaptation of benthic plants to light. III. Content of photosynthetic pigments in marine macrophytes from differently illuminated habitats, Sov. J. Mar. Biol., 1978, vol. 4, no. 2, pp. 597–604.

    Google Scholar 

  4. Perestenko, L.P., Vodorosli zaliva Petra Velikogo (Algae of Peter the Great Bay), Leningrad: Nauka, 1980.

    Google Scholar 

  5. Tarasov, V.G., Kasyanov, V.L., Adrianov, A.V., et al., Ecological condition and bottom communities of Patrokl and Sobol bays (Peter the Great Bay, Sea of Japan): The past and the present, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 2005, no. 1, pp. 3–18.

    Google Scholar 

  6. Tkachenko, F.P., Sitnikova, Yu.A., and Kutsin, E.B., Antioxydant system elements of seaweeds from the Black Sea regions with different rate of pollution, Ekol. Morya, 2004, vol. 65, pp. 70–74.

    Google Scholar 

  7. Shakhmatova, O.A. and Milchakova, N.A., The influence of environmental conditions on the catalase activity of Black Sea algae mass, Algologia, 2014, vol. 24, no. 4, pp. 461–476.

    Article  Google Scholar 

  8. Shitikov, V.K. and Rozenberg, G.S., Randomizatsiya i butstrep: statisticheskii analiz v biologii i ekologii s ispol’zovaniem R (Randomization and Bootstrap: Statistical Analysis in Biology and Ecology Using R), Tolyatti: Kassandra, 2013.

    Google Scholar 

  9. Abele, D. and Puntarulo, S., Formation of reactive species and induction of antioxidant protection systems in polar and temperate marine invertebrates and fish, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2004, vol. 138, pp. 405–415.

    Article  Google Scholar 

  10. Aguilera, J., Dummermuth, A.L., Karsten, U., et al., Enzymatic defense against photooxidative stress induced by ultraviolet radiation in Arctic marine macroalgae, Polar Biol., 2002, vol. 25, pp. 432–441.

    Google Scholar 

  11. Aguilera, J., Wiencke, C., and Dummermuth, A.L., Biochemical properties of antioxidative enzymes and the effect of radiation conditions in marine macroalgae from Kongsfjorden and other regions, Ber. Polar Meeresforsch., 2004, vol. 492, pp. 195–208.

    Google Scholar 

  12. Alscher, R.G., Erturk, N., and Health, L.S., Role of superoxide dismutases (SODs) in controlling oxidative stress in plants, J. Exp. Bot., 2002, vol. 53, pp. 1331–1341.

    Article  CAS  PubMed  Google Scholar 

  13. Anderson, M.E., Determination of glutathione and glutathione disulfide in biological samples, Methods Enzymol., 1985, vol. 113, pp. 548–555.

    Article  CAS  PubMed  Google Scholar 

  14. Asada, K., Production and scavenging of reactive oxygen species in chloroplasts and their functions, Plant Physiol., 2006, vol. 141, pp. 391–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beers, R.F. and Sizer, I.W., A spectrophotometric method for measuring breakdown of hydrogen peroxide by catalase, J. Biol. Chem., 1952, vol. 195, pp. 133–140.

    CAS  PubMed  Google Scholar 

  16. Beyer, W.F. and Fridovich, I., Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions, Anal. Biochem., 1987, vol. 161, pp. 559–566.

    Article  CAS  PubMed  Google Scholar 

  17. Bianchi, T.S., Kautsky, L., and Argyrou, M., Dominants chlorophylls and carotenoids in macroalgae of the Baltic Sea (Baltic proper): Their use as potential biomarkers, Sarsia, 1997, vol. 82, pp. 55–62.

    Article  Google Scholar 

  18. Bischof, K. and Rautenberger, R., Seaweed responses to environmental stress: Reactive oxygen and antioxidative strategies, Ecol. Stud., 2012, vol. 219, pp. 109–132.

    Article  Google Scholar 

  19. Bradford, E., A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  20. Carvalho, A., Neto, A., Tonon, A., et al., Circadian protection against oxidative stress in marine algae, Hypnos, 2004, vol. 1, pp. 142–157.

    Google Scholar 

  21. Chakraborty, S., Santra, S.C., and Bhattacharya, T., Seasonal variation of enzyme activity and stress metabolites in eight benthic macroalgae with fluctuations in salinity of Sunderban estuary, India, Indian J. Mar. Sci., 2010, vol. 3, pp. 429–433.

    Google Scholar 

  22. Cho, S.M., Lee, S.M., Ko, Y.D., et al., Molecular systematic reassessment of Sargassum (Fucales, Phaeophyceae) in Korea using four gene regions, Bot. Mar., 2012, vol. 55, pp. 473–484.

    Article  Google Scholar 

  23. Choo, K., Snoeijs, P., and Pedersen, M.J., Oxidative stress tolerance in the filamentous alga Cladophora glomerata and Enteromorpha ahlneriana, J. Exp. Mar. Biol. Ecol., 2004, vol. 298, pp. 111–123.

    Article  CAS  Google Scholar 

  24. Coba, F., Aguilera, J., Figueroa, F.L., et al., Antioxidant activity of mycosporine-like amino acids isolated from three red macroalgae and one marine lichen, J. Appl. Phycol., 2009, vol. 21, pp. 161–169.

    Article  Google Scholar 

  25. Collen, J. and Davison, I.R., Reactive oxygen metabolism in intertidal Fucus spp. (Phaeophyceae), J. Phycol., 1999, vol. 35, pp. 62–69.

    Article  CAS  Google Scholar 

  26. Collen, J. and Davison, I.R., Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds Mastocarpus stellatus and Chondrus crispus, Plant, Cell Environ., 1999, vol. 22, pp. 1143–1151.

    Article  CAS  Google Scholar 

  27. Connan, S., Delisle, F., Deslandes, E., and Gall, E.A., Intra-thallus phlorotannin content and antioxidant activity in Phaeophyceae of temperate waters, Bot. Mar., 2006, vol. 49, pp. 39–46.

    Article  CAS  Google Scholar 

  28. Contreras, L., Moenne, A., and Correa, J.A., Antioxidant responses in Scytosiphon lomentaria (Phaeophyceae) inhabiting copper enriched coastal environments, J. Phycol., 2005, vol. 41, pp. 1184–1195.

    Article  CAS  Google Scholar 

  29. Engels, N.M., Oxidative damage and antioxidant metabolism of Ulva pertusa and the associated grazer Micrelenchus tenebrosus in response to fluoranthene exposure, Master Sci. Thesis Univ. Otago, 2011. http://hdl.handle.net/10523/1949. Accessed September 5, 2016.

    Google Scholar 

  30. Flores-Molina, M.R., Thomas, D., Lovazzano, C., et al., Desiccation stress in intertidal seaweeds: effects on morphology, antioxidant responses and photosynthetic performance, Aquat. Bot., 2014, vol. 113, pp. 90–99.

    Article  CAS  Google Scholar 

  31. Gillespie, K.M. and Ainsworth, T.A., Measurement of reduced, oxidized and total ascorbate content in plants, Nat. Protoc., 2007, vol. 2, no. 4, pp. 871–874.

    Article  CAS  PubMed  Google Scholar 

  32. Goldberg, D.M. and Spooner, R.J., Glutathione reductase, Methods of Enzymatic Analysis, Weinheim: Verlag Chemie, 1983, vol. 111, pp. 258–265.

    Google Scholar 

  33. Guiry, M.D., Guiry, G.M., AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. Accessed September 5, 2016.

  34. Gylle, A.M, Nygard, C.A., Syan, C.I., et al., Photosynthesis in relation to D1, PsaA and Rubisco in marine and brackish water ecotypes of Fucus vesiculosus and Fucus radicans (Phaeophyceae), Hydrobiologia, 2013, vol. 700, pp. 109–119.

    Article  CAS  Google Scholar 

  35. Jiao, G., Yu, G., Zhang, J., and Ewart, H.S., Chemical structures and bioactivities of sulfated polysaccharides from marine algae, Mar. Drugs, 2011, vol. 9, pp. 196–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Khan, N.M., Mobin, M., and Abbas, Z.K., Variation in photosynthetic pigments, antioxidant enzymes and osmolyte accumulation in seaweeds of Red Sea, Int. J. Plant Biol. Res., 2015, vol. 3, pp. 1028–1034.

    Google Scholar 

  37. Lee, J.I., Kim, H.G., Geraldino, P.J.L., et al., Molecular classification of the genus Grateloupia (Halymeniaceae, Rhodophyta) in Korea, Algae, 2009, vol. 24, no. 4, pp. 231–238.

    Article  Google Scholar 

  38. Lesser, M.P., Oxidative stress in marine environments: biochemistry and physiological ecology, Annu. Rev. Physiol., 2006, vol. 68, pp. 253–278.

    Article  CAS  PubMed  Google Scholar 

  39. Lobban, C.S. and Harrison, P.J., Seaweed Ecology and Physiology, New York: Cambridge Univ. Press, 1994.

    Book  Google Scholar 

  40. Lohrmann, N.L., Logan, B.A., and Jonson, A.S., Seasonal acclimatization of antioxidants and photosynthesis in Chondrus crispus and Mastocarpus stellatus, two co-occurring red algae with differing stress tolerances, Biol. Bull., 2004, vol. 207, pp. 225–232.

    Article  CAS  PubMed  Google Scholar 

  41. Mizuta, H. and Yasui, H., Significance of radical oxygen production in sorus development and zoospore germination in Saccharina japonica (Phaeophyceae), Bot. Mar., 2010, vol. 53, pp. 409–416.

    Article  CAS  Google Scholar 

  42. Munda, I.M., Preliminary information on the ascorbic acid content in some Adriatic seaweeds, Hydrobiologia, 1987, vols. 151–152, pp. 477–481.

    Article  Google Scholar 

  43. Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.

    CAS  Google Scholar 

  44. Park, J.J., Han, T., and Choi, E.M., Oxidative stress and antioxidant activities of intertidal macroalgae in Korea, J. Food Sci. Nutr., 2011, vol. 16, pp. 313–320.

    Google Scholar 

  45. Pawlik-Skowronska, B., Pirszel J., and Brown, M.T., Concentrations of phytochelatins and glutathione found in natural assemblages of seaweeds depend on species and metal concentrations of the habit, Aquat. Toxicol., 2007, vol. 83, pp. 190–199.

    Article  CAS  PubMed  Google Scholar 

  46. Schiavon, M., Morob, I., Pilon-Smitsc, E.A., et al., Accumulation of selenium in Ulva sp. and effects on morphology, ultrastructure and antioxidant enzymes and metabolites, Aquat. Toxicol., 2012, vols. 122–123, pp. 222–231.

    Article  PubMed  Google Scholar 

  47. Telfer, A., Dhami, S., Bishop, S.M., et al., β-Carotene quenches singlet oxygen formed by isolated photosystem II reaction centers, Biochemistry, 1994, vol. 33, pp. 14469–14474.

    Article  CAS  PubMed  Google Scholar 

  48. Titlyanov, E.A., Titlyanova, T.V., and Belous, O.S., Checklist of the marine flora of Nha Trang Bay (Vietnam, South China Sea) and decadal changes in the species diversity composition between 1953 and 2010, Bot. Mar., 2015, vol. 58, pp. 1–11.

    Article  Google Scholar 

  49. Wahid, A., Gelani, S., Ashraf, M., and Foolad, M.R., Heat tolerance in plants: An overview, Environ. Exp. Bot., 2007, vol. 61, pp. 199–223.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Yakovleva.

Additional information

Original Russian Text © I.M. Yakovleva, E.S. Belotsitsenko, 2017, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovleva, I.M., Belotsitsenko, E.S. The antioxidant potential of dominant macroalgae species from the Sea of Japan. Russ J Mar Biol 43, 407–418 (2017). https://doi.org/10.1134/S106307401705011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106307401705011X

Keywords

Navigation