Skip to main content
Log in

The Rat Heart in the Prenatal and Postnatal Periods of Ontogenesis

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Rats are the most common laboratory animals that are used in experiments to evaluate the cardiotoxic and, particularly, teratogenic effects of therapeutic agents. For correct interpretation of results of experimental studies, it is necessary to have a detailed understanding of the specific features of the development and structure of the heart of laboratory animals. The cardiac morphogenesis in rats, compared with that of humans, has the following specific features: (1) the peak of proliferative activity of cardiomyocytes occurs in the late stages of the prenatal period of ontogenesis, (2) the transition of the myocardium from hyperplastic to hypertrophic growth occurs in the early postnatal period of ontogenesis, and (3) the hypertrophic type of myocardial growth consists in the formation of cardiomyocytes with several diploid nuclei (multinucleated cardiomyocytes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Abrashova, T.V., Gushchin, Ya.A., Kovaleva, M.A., et al., Doklinicheskie issledovaniya. Spravochnik: fiziologicheskie, biokhimicheskie i biometricheskie pokazateli normy eksperimental’nykh zhivotnykh (Preclinical Studies. Handbook: Physiological, Biochemical and Biometric Indicators of the Norm of Experimental Animals), Makarov, V.G. and Makarova, M.N., Eds., St. Petersburg: LEMA, 2013.

    Google Scholar 

  2. Anderson, R.H., Brown, N.A., and Webb, S., Development and structure of the atrial septum, Heart, 2002, vol. 88, no. 1, pp. 104–110.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Andrés, A., Satrústegui, J., and Machado, A., Development of enzymes of energy metabolism in rat heart, Biol. Neonate, 1984, vol. 45, no. 2, pp. 78–85.

    Article  PubMed  Google Scholar 

  4. Anversa, P., Olivetti, G., and Loud, A.V., Morphometric study of early postnatal development in the left and right ventricular myocardium of the rat. I. Hypertrophy, hyperplasia, and binucleation of myocytes, Circ. Res., 1980, vol. 46, no. 4, pp. 495–502.

    Article  CAS  PubMed  Google Scholar 

  5. Atkinson, A.J., Logantha, S.J., Hao, G., et al., Functional, anatomical, and molecular investigation of the cardiac conduction system and arrhythmogenic atrioventricular ring tissue in the rat heart, J. Am. Heart Assoc., 2013, vol. 2, no. 6. e000246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Baldwin, H.S., Jensen, K.L., and Solursh, M., Myogenic cytodifferentiation of the precardiac mesoderm in the rat, Differentiation, 1991, vol. 47, no. 3, pp. 163–172.

    Article  CAS  PubMed  Google Scholar 

  7. Banerjee, I., Fuseler, J.W., Price, R.L., et al., Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse, Am. J. Physiol. Heart Circ. Physiol., 2007, vol. 293, no. 3, pp. H1883–H1891.

    Article  CAS  PubMed  Google Scholar 

  8. Bensley, J., De Matteo, R., Harding, R., et al., Three-dimensional direct measurement of cardiomyocyte volume, nuclearity, and ploidy in thick histological sections, Sci. Rep., 2016, vol. 6, p. 23756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bergmann, O., Zdunek, S., Felker, A., et al., Dynamics of cell generation and turnover in the human heart, Cell, 2015, vol. 161, no. 7, pp. 1566–1575.

    Article  CAS  PubMed  Google Scholar 

  10. Bishop, S.P., Anderson, P.G., and Tucker, D.C., Morphological development of the rat heart growing in oculo in the absence of hemodynamic work load, Circ. Res., 1990, vol. 66, no. 1, pp. 84–102.

    Article  CAS  PubMed  Google Scholar 

  11. Bradley, A., Fant, P., Guionaud, S., et al., Cardiovascular System, Chapter 30 in Boorman’s Pathology of the Rat, Suttie, A.W., Ed., Academic, 2018, 2nd ed., pp. 591–627.

    Google Scholar 

  12. Bryda, E.C., The Mighty Mouse: the impact of rodents on advances in biomedical research, Mol. Med., 2013, vol. 110, no. 3, pp. 207–211.

    Google Scholar 

  13. Buetow, B.S. and Laflamme, M.A., Cardiovascular, comparative anatomy and histology, in A Mouse, Rat, and Human Atlas, Treuting, P., Dintzis, S., and Montine, K.S., Eds., London: Academic, 2018, 2nd ed., pp. 163–189.

    Google Scholar 

  14. Chacko, K.J., Observations on the ultrastructure of developing myocardium of rat embryos, J. Morphol., 1976, vol. 150, no. 3, pp. 681–709.

    Article  CAS  PubMed  Google Scholar 

  15. Chan, W.Y., Cheung, C.S., Yung, K.M., et al., Cardiac neural crest of the mouse embryo: axial level of origin, migratory pathway and cell autonomy of the splotch (Sp2H) mutant effect, Development, 2004, vol. 131, no. 14, pp. 3367–3379.

    Article  CAS  PubMed  Google Scholar 

  16. Chen X., Zhang L., Wang C.Prenatal hypoxia-induced epigenomic and transcriptomic reprogramming in rat fetal and adult offspring hearts, Sci. Data, 2019, vol. 6, no. 238.

  17. Chumasov, E.I., Petrova, E.S., and Korzhevsky, D.E., Rat heart innervation (immunohistochemical study), Morfologiya, 2009, vol. 135, no. 2, pp. 33–37.

    CAS  Google Scholar 

  18. Chumasov, E.I., Petrova, E.S., and Korzhevsky, D.E., Study of the structure of the developing epicardium and features of vascularization in the heart of newborn rats, Aktual. Vopr. Vet. Biol., 2017, no. 2 (34), pp. 12–18.

  19. Chumasov, E.I., Petrova, E.S., and Korzhevsky, D.E., Structural and functional characteristics of endothelial cells of the heart vessels of a newborn rat (immunohistochemical study), Reg. Krovoobrashch. Mikrotsirk., 2018, vol. 17, no. 2, pp. 80–85.

    Google Scholar 

  20. Chumasov, E.I., Petrova, E.S., and Korzhevsky, D.E., Structural and functional features of the endothelium of the heart vessels of sexually mature rats according to immunohistochemical studies, Reg. Krovoobrashch. Mikrotsirk., 2019, vol. 18, no. 2, pp. 70–77.

    Google Scholar 

  21. Clark, C.M., Jr., Characterization of glucose metabolism in the isolated rat heart during fetal and early neonatal development, Diabetes, 1973, vol. 22, no. 1, pp. 41–49.

    Article  CAS  PubMed  Google Scholar 

  22. Clubb, F.J., Jr. and Bishop, S.P., Formation of binucleated myocardial cells in the neonatal rat. An index for growth hypertrophy, Lab. Invest., 1984, vol. 50, no. 5, pp. 571–577.

    PubMed  Google Scholar 

  23. Cohen, E.D., Yee, M., Porter, G.A., et al., Neonatal hyperoxia inhibits proliferation and survival of atrial cardiomyocytes by suppressing fatty acid synthesis, JCI Insight, 2021. 140785.

  24. Combs, M.D. and Yutzey, K.E., Heart valve development: regulatory networks in development and disease, Circ. Res., 2009, vol. 105, no. 5, pp. 408–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Corstius, H.B., Zimanyi, M.A., Maka, N., et al., Effect of intrauterine growth restriction on the number of cardiomyocytes in rat hearts, Pediatr. Res., 2005, vol. 57, no. 6, pp. 796–800.

    Article  CAS  PubMed  Google Scholar 

  26. Couch, J.R., West, T.C., and Hoff, H.E., Development of the action potential of the prenatal rat heart, Circ. Res., 1969, vol. 24, no. 1, pp. 19–31.

    Article  CAS  PubMed  Google Scholar 

  27. Deepe, R., Fitzgerald, E., Wolters, R., et al., The mesenchymal cap of the atrial septum and atrial and atrioventricular septation, J. Cardiovasc. Dev. Dis., 2020, vol. 7, no. 4, p. 50.

    Article  PubMed Central  Google Scholar 

  28. DeRuiter, M.C., Poelmann, R.E., VanderPlas-de Vries, I., et al., The development of the myocardium and endocardium in mouse embryos. Fusion of two heart tubes?, Anat. Embryol., 1992, vol. 185, no. 5, pp. 461–473.

    Article  CAS  Google Scholar 

  29. Dodou, E., Verzi, M.P., Anderson, J.P., et al., Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development, Development, 2004, vol. 131, no. 16, pp. 3931–3942.

    Article  CAS  PubMed  Google Scholar 

  30. Drake, C.J. and Fleming, P.A., Vasculogenesis in the day 6.5 to 9.5 mouse embryo, Blood, 2000, vol. 95, no. 5, pp. 1671–1679.

    Article  CAS  PubMed  Google Scholar 

  31. Ferreira, G.S., Veening-Griffioen, D.H., Boon, W.P.C., et al., Leveling the translational gap for animal to human efficacy data, Animals (Basel), 2020, vol. 10, no. 7, p. 1199.

    Article  PubMed Central  Google Scholar 

  32. Forman, D.E., Cittadini, A., Azhar, G., et al., Cardiac morphology and function in senescent rats: gender-related differences, J. Am. Coll. Cardiol., 1997, vol. 30, no. 7, pp. 1872–1877.

    Article  CAS  PubMed  Google Scholar 

  33. Gear, R., Kendziorski, J.A., and Belcher, S.M., Effects of bisphenol A on incidence and severity of cardiac lesions in the NCTR-Sprague-Dawley rat: a CLARITY-BPA study, Toxicol. Lett., 2017, vol. 275. P. 123–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gourdie, R.G., Green, C.R., Severs, N.J., et al., Immunolabelling patterns of gap junction connexins in the developing and mature rat heart, Anat. Embryol. (Berl.), 1992, vol. 185, no. 4, pp. 363–378.

    Article  CAS  Google Scholar 

  35. Greeley, M.A. and White-Hunt, S.J., Cardiovascular system, in Atlas of Histology of the Juvenile Rat, Parker, G.A. and Picut, C.A., Eds., Cambridge, MA: Academic, 2016, pp. 423–437.

    Google Scholar 

  36. Grego-Bessa, J., Luna-Zurita, L., del Monte, G., et al., Notch signaling is essential for ventricular chamber development, Dev. Cell, 2007, vol. 12, no. 3, pp. 415–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guo, Y. and Pu, W.T., Cardiomyocyte maturation: new phase in development, Circ. Res., 2020, vol. 126, no. 8, pp. 1086–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hackam, D.G. and Redelmeier, D.A., Translation of research evidence from animals to humans, JAMA, 2006, vol. 296, no. 14, pp. 1731–1732.

    Article  CAS  PubMed  Google Scholar 

  39. Harmon, J.R., Delongchamp, R.R., Kimmel, G.L., et al., Effect of prenatal propranolol exposure on development of the postnatal rat heart, Teratog. Carcinog. Mutagen., 1986, vol. 6, no. 2, pp. 139–150.

    Article  CAS  PubMed  Google Scholar 

  40. Hildreth, V., Webb, S., Bradshaw, L., et al., Cells migrating from the neural crest contribute to the innervation of the venous pole of the heart, J. Anat., 2008, vol. 212, no. 1, pp. 1–11.

    PubMed  PubMed Central  Google Scholar 

  41. Iliev, A.A., Kotov, G.N., Landzhov, B.V., et al., A comparative morphometric study of the myocardium during the postnatal development in normotensive and spontaneously hypertensive rats, Folia Morphol., 2018, vol. 77, no. 2, pp. 253–265.

    Article  CAS  Google Scholar 

  42. Ito, T., Orino, T., Harada, K., et al., Morphological maturation of left ventricle in fetal rats: changes in left ventricular volume, mass, wall thickness, and mitral valvular size, Early Hum., 1998, vol. 53, no. 1, pp. 1–7.

    Article  CAS  Google Scholar 

  43. Ito, T., Harada, K., and Takada, G., In situ morphometric analysis of left and right ventricles in fetal rats: changes in ventricular volume, mass, wall thickness, and valvular size, Tohoku. J. Exp. Med., 2001, vol. 193, no. 1, pp. 37–44.

    Article  CAS  PubMed  Google Scholar 

  44. Ivanchenko, M.V. and Tverdokhleb, I.V., The nature of the formation of intermitochondrial contacts during ontogenetic formation of the mitochondrial apparatus under normal conditions and under conditions of hypoxic damage to cardiogenesis, Ross. Med.-Biol. Vestn. Akad. im. I.P. Pavlova, 2014, no. 2, pp. 10–17.

  45. Ivanovitch, K., Temiño, S., and Torres, M., Live imaging of heart tube development in mouse reveals alternating phases of cardiac differentiation and morphogenesis, Elife, 2017, vol. 6. e30668.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jacob, H.J., Functional genomics and rat models, Genome Res., 1999, vol. 9, no. 11, pp. 1013–1016.

    Article  CAS  PubMed  Google Scholar 

  47. Jurado, S.R., da Silva Franco, R.J., Bankoff, A.D.P., et al., The heart is a target organ in offspring rats due to maternal hypertension, J. Clin. Trial. Cardiol., 2013, vol. 1, no. 1, p. 1.

    Article  Google Scholar 

  48. Kaur, S., McGlashan, S.R., and Ward, M.L., Evidence of primary cilia in the developing rat heart, Cilia, 2018, vol. 7, p. 4.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Koban, M.U., Moorman, A.F., Holtz, J., et al., Expressional analysis of the cardiac Na–Ca exchanger in rat development and senescence, Cardiovasc. Res., 1998, vol. 37, no. 2, pp. 405–423.

    Article  CAS  PubMed  Google Scholar 

  50. Kozlov, V.A., Tverdokhleb, I.V., Shpon’ka, I.S., et al., Morfologiya razvivayuschegosya serdtsa (struktura, ul’trastruktura, metabolizm) (The Morphology of the Developing Heart (Structure, Ultrastructure, and Metabolism)), Dnepropetrovsk: Dnepropetrovsk. Gos. Med. Akad., 1995.

  51. Lam, M.L., Bartoli, M., and Claycomb, W.C., The 21-day postnatal rat ventricular cardiac muscle cell in culture as an experimental model to study adult cardiomyocyte gene expression, Mol. Cell. Biochem., 2002, vol. 229, nos. 1–2, pp. 51–62.

    Article  CAS  PubMed  Google Scholar 

  52. L’Ecuyer, T.J., Schulte, D., and Lin, J.J., Thin filament changes during in vivo rat heart development, Pediatr. Res., 1991, vol. 30, no. 3, pp. 232–238.

    Article  PubMed  Google Scholar 

  53. Li, F., Wang, X., and Gerdes, A.M., Formation of binucleated cardiac myocytes in rat heart: II. Cytoskeletal organization, J. Mol. Cell. Cardiol., 1997, vol. 29, no. 6, pp. 1553–1565.

    Article  CAS  PubMed  Google Scholar 

  54. Li, F., Wang, X., Capasso, J.M., and Gerdes, A.M., Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development, J. Mol. Cell. Cardiol., 1996, vol. 28, no. 8, pp. 1737–1746.

    Article  CAS  PubMed  Google Scholar 

  55. Liang, X., Wang, G., Lin, L., et al., HCN4 dynamically marks the first heart field and conduction system precursors, Circ. Res., 2013, vol. 113, no. 4, pp. 399–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Manner, J. and Yelbuz, T.M., Functional morphology of the cardiac jelly in the tubular heart of vertebrate embryos, J. Cardiovasc. Dev. Dis., 2019, vol. 6, no. 1, p. 12.

    Article  PubMed Central  CAS  Google Scholar 

  57. Marcela, S.G., Cristina, R.M., Angel, P.G., et al., Chronological and morphological study of heart development in the rat, Anat. Rec. (Hoboken), 2012, vol. 295, no. 8, pp. 1267–1290.

    Article  Google Scholar 

  58. Markel, M., Ginzel, M., Peukert, N., et al., High resolution three-dimensional imaging and measurement of lung, heart, liver, and diaphragmatic development in the fetal rat based on micro-computed tomography (micro-CT), J. Anat., 2020, vol. 238, no. 4, pp. 1042–1054.

    Article  PubMed Central  CAS  Google Scholar 

  59. Markwald, R.R., Fitzharris, T.P., and Smith, W.N., Structural analysis of endocardial cytodifferentiation, Dev. Biol., 1975, vol. 42, no. 1, pp. 160–180.

    Article  CAS  PubMed  Google Scholar 

  60. Mochet, M., Moravec, J., Guillemot, H., et al., The ultrastructure of rat conductive tissue; an electron microscopic study of the atrioventricular node and the bundle of His, J. Mol. Cell. Cardiol., 1975, vol. 7, no. 12, pp. 879–889.

    Article  CAS  PubMed  Google Scholar 

  61. Moretti, A., Caron, L., Nakano, A., et al., Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification, Cell, 2006, vol. 127, no. 6, pp. 1151–1165.

    Article  CAS  PubMed  Google Scholar 

  62. Morse, D.E., Rogers, C.S., and McCann, P.S., Atrial septation in the chick and rat: a review, J. Submicrosc. Cytol., 1984, vol. 16, no. 2, pp. 259–272.

    CAS  PubMed  Google Scholar 

  63. Nakagawa, M., Thompson, R.P., Terracio, L., et al., Developmental anatomy of HNK-1 immunoreactivity in the embryonic rat heart: co-distribution with early conduction tissue, Anat. Embryol., 1993, vol. 187, no. 5, pp. 445–460.

    Article  CAS  Google Scholar 

  64. Navaratnam, V., Woodward, J.M., and Skepper, J.N., Specific heart granules and natriuretic peptide in the developing myocardium of fetal and neonatal rats and hamsters, J. Anat., 1989, vol. 163. P. 261–273.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Nefodova, O.O., Shatorna, V.F., Halperin, O.I., et al., Cardiogenesis changes under the impact of cadmium chloride in rat embryogenesis, World Med. Biol., 2019, vol. 15, no. 3, no. 69, pp. 209–213.

  66. Nesbitt, T., Lemley, A., Davis, J., et al., Epicardial development in the rat: a new perspective, Microsc. Microanal., 2006, vol. 12, no. 5, pp. 390–398.

    Article  CAS  PubMed  Google Scholar 

  67. Olivetti, G., Anversa, P., and Loud, A.V., Morphometric study of early postnatal development in the left and right ventricular myocardium of the rat. II. Tissue composition, capillary growth, and sarcoplasmic alterations, Circ. Res., 1980, vol. 46, no. 4, pp. 503–512.

    Article  CAS  PubMed  Google Scholar 

  68. Ošt'ádalová, I. and Babický, A., Periodization of the early postnatal development in the rat with particular attention to the weaning period, Physiol. Res., 2012, vol. 61, suppl. 1, pp. S1–S7.

    Article  PubMed  Google Scholar 

  69. Paige, S.L., Plonowska, K., Xu, A., et al., Molecular regulation of cardiomyocyte differentiation, Circ. Res., 2015, vol. 116, no. 2, pp. 341–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pavlovich, E.R., Electron microscopic examination of the His bundle branch in an intact rat heart, Sovrem. Naukoemk. Tekhnol., 2007, no. 10, pp. 78–79.

  71. Pavlovich, E.R., Pistsova, T.V., and Fedoseev, V.A., Comparative quantitative analysis of the connective tissue component of the working myocardium of the right atrium and left ventricle of the heart of an intact rat, Sovrem. Naukoemk. Tekhnol., 2007, no. 5, pp. 73–74.

  72. Piao, Y., Liu, Y., and Xie, X., Change trends of organ weight background data in Sprague Dawley rats at different ages, J. Toxicol. Pathol., 2013, vol. 26, no. 1, pp. 29–34.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ratajska, A., Ciszek, B., and Sowińska, A., Embryonic development of coronary vasculature in rats: corrosion casting studies, Anat. Rec., 2003, vol. 270, no. 2, pp. 109–116.

    Article  Google Scholar 

  74. Ribadeau-Dumas, A., Brady, M., Boateng, S.Y., et al., Sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2) gene products are regulated post-transcriptionally during rat cardiac development, Cardiovasc. Res., 1999, vol. 43, no. 2, pp. 426–436.

    Article  CAS  PubMed  Google Scholar 

  75. Rodríguez-Rodríguez, P., López de Pablo, A.L., García-Prieto, C.F., et al., Long term effects of fetal undernutrition on rat heart. Role of hypertension and oxidative stress, PLoS One, 2017, vol. 12, no. 2.

  76. Rogers, C.S. and Morse, D.E., Atrial septation in the rat. I. A light microscopic and histochemical study, J. Submicrosc. Cytol., 1986, vol. 18, no. 2, pp. 313–324.

    CAS  PubMed  Google Scholar 

  77. Sedmera, D. and McQuinn, T., Embryogenesis of the heart muscle, Heart Fail. Clin., 2008, vol. 4, no. 3, pp. 235–245.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Seki, S., Nagashima, M., Yamada, Y., et al., Fetal and postnatal development of Ca2+ transients and Ca2+ sparks in rat cardiomyocytes, Cardiovasc. Res., 2003, vol. 58, no. 3, pp. 535–548.

    Article  CAS  PubMed  Google Scholar 

  79. Shevchenko, K.M., Morphological features of atrial myocardium embryonic development and its changes caused by hypoxia effect, Regul. Mech. Biosyst., 2019, vol. 10, no. 1, pp. 129–135.

    Article  Google Scholar 

  80. Stankunas, K., Hang, C.T., Tsun, Z.Y., et al., Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis, Dev. Cell, 2008, vol. 14, no. 2, pp. 298–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Suzuki, H.R., Solursh, M., and Baldwin, H.S., Relationship between fibronectin expression during gastrulation and heart formation in the rat embryo, Dev. Dyn., 1995, vol. 204, no. 3, pp. 259–277.

    Article  CAS  PubMed  Google Scholar 

  82. Takeuchi, J.K. and Bruneau, B.G., Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors, Nature, 2009, vol. 459, no. 7247, pp. 708–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Thompson, R.P., Göbel, J., Lindroth, J.R., et al., Embryology of the endocrine heart, in Functional Morphology of the Endocrine Heart, Forssmann, W.G., Scheuermann, D.W., and Alt, J., Eds., Berlin: Springer, 1989, pp. 1–11.

    Google Scholar 

  84. van Kempen, M.J., Fromaget, C., Gros, D., et al., Spatial distribution of connexin 43, the major cardiac gap junction protein, in the developing and adult rat heart, Circ. Res., 1991, vol. 68, no. 6, pp. 1638–1651.

    Article  CAS  PubMed  Google Scholar 

  85. Van Vliet, P., Wu, S.M., Zaffran, S., et al., Early cardiac development: a view from stem cells to embryos, Cardiovasc. Res., 2012, vol. 96, no. 3, pp. 352–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Volkova, O.V., Tikhonova, T.A., Illarionova, N.G., et al., Cytoarchitectonics of the sinus-atrial node of the rat heart, Uch. Zap. St.-Peterb. Gos. Med. Univ. im. I.P. Pavlova, 2011, no. 2, pp. 44–45.

  87. Wei, Y.F., Rodi, C.P., Day, M.L., et al., Developmental changes in the rat atriopeptin hormonal system, J. Clin. Invest., 1987, vol. 79, no. 5, pp. 1325–1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wenink, A.C., Knaapen, M.W., Vrolijk, B.C., et al., Development of myocardial fiber organization in the rat heart, Anat. Embryol., 1996, vol. 193, no. 6, pp. 559–567.

    Article  CAS  Google Scholar 

  89. Wessels, A., van den Hoff, M.J., Adamo, R.F., et al., Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart, Dev. Biol., 2012, vol. 366, no. 2, pp. 111–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Witman, N., Zhou, C., and Beverborg, N.G., et al., Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration, Semin. Cell. Dev. Biol., 2020, vol. 100, pp. 29–51.

    Article  PubMed  Google Scholar 

  91. Xavier-Vidal, R. and Mandarim-de-Lacerda, C.A., Cardiomyocyte proliferation and hypertrophy in the human fetus: a quantitative study of the myocyte nuclei, Bull. Assoc. Anat. (Nancy), 1995, vol. 79, no. 246, pp. 27–31.

    CAS  Google Scholar 

  92. Xue, Q., Chen, F., Zhang, H., et al., Maternal high-fat diet alters angiotensin II receptors and causes changes in fetal and neonatal rats, Biol. Reprod., 2019, vol. 100, no. 5, pp. 1193–1203.

    Article  PubMed  Google Scholar 

  93. Ya, J., Markman, M.W., Wagenaar, G.T., et al., Expression of the smooth-muscle proteins alpha-smooth-muscle actin and calponin, and of the intermediate filament protein desmin are parameters of cardiomyocyte maturation in the prenatal rat heart, Anat. Rec., 1997, vol. 249, no. 4, pp. 495–505.

    Article  CAS  PubMed  Google Scholar 

  94. Yamshchikova, E.N., Morphological characteristics of reactive changes in cardiac muscle tissue under conditions of experimentally altered histogenesis, Extended Abstract of Cand. Sci. (Med.) Dissertation, Orenburg: Sam. Gos. Med. Univ., 2004.

  95. Zagoruiko, G.E. and Zagoruiko, Yu.V., Age-related changes in size and number of cardiomyocytes and their nuclei in the process of prenatal and early postnatal development of rat heart, Vestn. Probl. Biol. Med., 2017, vol. 3, no. 4, pp. 304–311.

    Google Scholar 

  96. Zagoruiko, G.E., Zagoruiko, Yu.V., and Filatova, V.L., Morphometric characteristics of populations of cardiomyocytes forming myocardial parenchyma in the process of postnatal cardiomyogenesis, Vestn. Probl. Biol. Med., 2018, vol. 2, no. 4, pp. 282–286.

    Article  Google Scholar 

  97. Zagoruiko, Yu.V., Zagoruiko, G.E., Martsinovsky, V.P., et al., Patterns of cardiomyogenesis in Wistar rats: an increase in the total number of cardiomyocytes and the formation of a population of binuclear myocytes in the myocardial parenchyma of the (LV + IVS) complex, Vestn. Probl. Biol. Med., 2019, vol. 2, no. 1, pp. 70–74.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

I.V. Milto developed the concept of this paper and also carried out a critical analysis of the content of the literature review. О.N. Serebrjakova participated in the writing of the “Development of the Rat’s Heart in the Prenatal Period of Ontogenesis” section. V.V. Ivanova participated in the writing of the “Development of the Rat’s Heart in the Postnatal Period of Ontogenesis” section, preparing the manuscript for publication, and is also the author of illustrations. I.V. Sukhodolo approved the final version of the article for publication.

Corresponding author

Correspondence to V. V. Ivanova.

Ethics declarations

The authors declare that they have no conflict of interests.

This article does not contain any studies involving human participants or laboratory animals as experimental models performed by the authors.

Additional information

Translated by A. Ermakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, V.V., Milto, I.V., Serebrjakova, O.N. et al. The Rat Heart in the Prenatal and Postnatal Periods of Ontogenesis. Russ J Dev Biol 52, 287–300 (2021). https://doi.org/10.1134/S1062360421050039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360421050039

Keywords:

Navigation