Skip to main content
Log in

Endogenous Cell Sources for Eye Retina Regeneration in Vertebrate Animals and Humans

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

A number of retinal diseases are known to result in impaired vision and even blindness. In this regard, the major issue that modern biology faces nowadays is to identify endogenous populations of cells that could be a potential source of retinal regeneration and provide their detailed description using advanced methods and various animal models. This will allow for finding the ways to control the behavior and regenerative activity of these cells in order to replace damaged retinal neurons, particularly photoreceptors, either by involving natural mechanisms or via cell transplantation. In this review, the latest data published in literature and results of the authors’ own research on localization, biology, and molecular genetic features of cell sources for retinal regeneration, obtained for all classes of vertebrates, from fish to mammals, are summarized. In the range of these cell populations existing in vertebrates, certain versatility in terms of gene expression has been found. A variety of ways for their mobilization for regeneration of the damaged retinal tissue in different animal classes and species have also been well documented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Abe, T., Yoshida, M., Yoshioka, Y., et al., Iris pigment epithelial cell transplantation for degenerative retinal diseases, Prog. Retin. Eye Res., 2007, vol. 26, no. 3, pp. 302–321.

    Article  CAS  PubMed  Google Scholar 

  2. Ahmad, I., Tang, L., and Pham, H., Identification of neural progenitors in the adult mammalian eye, Biochem. Biophys. Res. Commun., 2000, vol. 270, pp. 517–521.

    Article  CAS  PubMed  Google Scholar 

  3. Ail, D. and Perron, M., Retinal degeneration and regeneration—lessons from fishes and amphibians, Curr. Pathobiol. Rep., 2017, vol. 5, pp. 67–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Araki, M., Regeneration of the amphibian retina: role of tissue interaction and related signaling molecules on RPE transdifferentiation, Dev. Growth Differ., 2007, vol. 49, no. 2, pp. 109–120.

    Article  PubMed  Google Scholar 

  5. Avdonin, P.P., Markitantova, Yu.V., Zinov’eva, R.D., and Mitashov, V.I., Expression of regulatory genes Pax6, Otx2, Six3, and FGF2 during newt retina regeneration, Biol. Bull. (Moscow), 2008, vol. 35, no. 4, pp. 355–361.

    Article  CAS  Google Scholar 

  6. Avdonin, P.P., Grigoryan, E.N., and Markitantova, Yu.V., Transcriptional factor Pitx2: localization during triton retina regeneration, Biol. Bull. (Moscow), 2010, vol. 37, no. 3, pp. 231–235.

    Article  CAS  Google Scholar 

  7. Azuma, N., Tadokoro, K., Asaka, A., et al., Transdifferentiation of the retinal pigment epithelia to the neural retina by transfer of the Pax6 transcriptional factor, Hum. Mol. Genet., 2005, vol. 12, pp. 1059–1068.

    Article  CAS  Google Scholar 

  8. Ballios, B.J., Clarke, L., Coles, B.L.K., et al., The adult retinal stem cell is a rare cell in the ciliary epithelium whose progeny can differentiate into photoreceptors, Biology Open, 2012, vol. 1, pp. 237–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bernardos, R.L., Lentz, S.I., Wolfe, M.S., and Raymond, P.A., Notch–Delta signaling is required for spatial patterning and Müller glia differentiation in the zebrafish retina, Dev. Biol., 2005, vol. 278, no. 2, pp. 381–395.

    Article  CAS  PubMed  Google Scholar 

  10. Bernardos, R.L., Barthel, L.K., Meyers, J.R., and Raymond, P.A., Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells, J. Neurosci., 2007, vol. 27, pp. 7028–7040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bhatia, B., Jayaram, H., Singhal, S., et al., Differences between the neurogenic and proliferative abilities of Müller glia with stem cell characteristics and the ciliary epithelium from the adult human eye, Exp. Eye Res., 2011, vol. 93, no. 6, pp. 852–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Borday, C., Cabochette, P., Parain, K., et al., Antagonistic cross-regulation between wnt and hedgehog signalling pathways controls post-embryonic retinal proliferation, Development, 2012, vol. 139, pp. 3499–3509.

    Article  CAS  PubMed  Google Scholar 

  13. Bringmann, A., Iandiev, I., Pannicke, T., et al., Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects, Prog. Retin. Eye Res., 2009, vol. 28, no. 6, pp. 423–451.

    Article  CAS  PubMed  Google Scholar 

  14. Casco-Robles, M.M., Islam, M.R., Inami, W., et al., Turning the fate of reprogramming cells from retinal disorder to regeneration by Pax6 in newts, Sci. Rep., 2016, vol. 6, p. 33761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cerveny, K.L., Varga, M., and Wilson, S.W., Continued growth and circuit building in the anamniote visual system, Dev. Neurobiol., 2012, vol. 72, pp. 328–345.

    Article  PubMed  Google Scholar 

  16. Charteris, D.G., Proliferative vitreoretinopathy: pathobiology, surgical management, and adjunctive treatment, Br. J. Ophthalmol., 1995, vol. 79, no. 10, pp. 953–960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, M., Tian, S., Glasgow, N.G., et al., Lgr5+ amacrine cells possess regenerative potential in the retina of adult mice, Aging Cell, 2015, vol. 14, no. 4, pp. 635–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chiba, C., The retinal pigment epithelium: an important player of retinal disorders and regeneration, Exp. Eye Res., 2014, vol. 123, pp. 107–114.

    Article  CAS  PubMed  Google Scholar 

  19. Chiba, C. and Mitashov, V.I., Cellular and molecular events in the adult newt retinal regeneration, in Strategies for Retinal Tissue Repair and Regeneration in Vertebrates: From Fish to Human, Chiba, Ch., Ed., Kerala, India: Research Signpost, 2007, pp. 15–33.

    Google Scholar 

  20. Cicero, S.A., Johnson, D., Reyntjens, S., et al., Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, pp. 6685–6690.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Close, J.L., Liu, J., Gumuscu, B., and Reh, T.A., Epidermal growth factor receptor expression regulates proliferation in the postnatal rat retina, Glia, 2006, vol. 54, no. 2, pp. 94–104.

    Article  PubMed  Google Scholar 

  22. Coles, B.L., Angenieux, B., Inoue, T., et al., Facile isolation and the characterization of human retinal stem cells, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, pp. 15772–15777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Coulombre, J.L. and Coulombre, A.J., Regeneration of neural retina from the pigmented epithelium in the chick embryo, Dev. Biol., 1965, vol. 12, pp. 79–92.

    Article  CAS  PubMed  Google Scholar 

  24. Del Debbio, C.B., Balasubramanian, S., Parameswaran, S., et al., Notch and Wnt signaling mediated rod photoreceptor regeneration by Müller cells in adult mammalian retina, PLoS One, 2010, vol. 5, no. 8. e12425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Engelhardt, M., Bogdahn, U., and Aigner, L., Adult retinal pigment epithelium cells express neural progenitor properties and the neuronal precursor protein doublecortin, Brain Res., 2005, vol. 1040, pp. 98–111.

    Article  CAS  PubMed  Google Scholar 

  26. Engerer, P., Suzuki, S.C., Yoshimatsu, T., et al., Uncoupling of neurogenesis and differentiation during retinal development, EMBO J., 2017, vol. 36, pp. 1134–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fischer, A.J., McGuire, C.R., Dierks, B.D., and Reh, T.A., Insulin and fibroblast growth factor 2 activate a neurogenic program in Müller glia of the chicken retina, J. Neurosci., 2002, vol. 22, pp. 9387–9398.

    Article  CAS  PubMed  Google Scholar 

  28. Fischer, A.J., Neural regeneration in the chick retina, Prog. Retin. Eye Res., 2005, vol. 24, no. 2, pp. 161–182.

    Article  PubMed  Google Scholar 

  29. Fischer, A.J., Bosse, J.L., and El-Hodiri, H.M., The ciliary marginal zone (CMZ) in development and regeneration of the vertebrate eye, Exp. Eye Res., 2013, vol. 116, pp. 199–204.

    Article  CAS  PubMed  Google Scholar 

  30. Fisher, A.J. and Reh, T.A., Identification of a proliferating marginal zone of retinal progenitors in postnatal chickens, Dev. Biol., 2000, vol. 220, pp. 197–210.

    Article  CAS  Google Scholar 

  31. Frøen, R., Johnsen, E.O., Nicolaissen, B., et al., Does the adult human ciliary body epithelium contain “true” retinal stem cells?, Biomed. Res. Int., 2013, vol. 2013, p. 531579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao, J., Cheon, K., Nusinowitz, S., et al., Progressive photoreceptor degeneration, outer segment dysplasia, and rhodopsin mislocalization in mice with targeted disruption of the retinitis pigmentosa-1 (Rp1) gene, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, pp. 5698–5703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Giannelli, S.G., Demontis, G.C., Pertile, G., et al., Adult human Muller glia cells are a highly efficient source of rod photoreceptors, Stem Cells, 2011, vol. 29, no. 2, pp. 344–356.

    Article  CAS  PubMed  Google Scholar 

  34. Goldman, D., Müller glial cell reprogramming and retina regeneration, Nat. Rev. Neurosci., 2014, vol. 15, pp. 431–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Götz, M., Sirko, S., Beckers, J., and Irmler, M., Reactive astrocytes as neural stem or progenitor cells: in vivo lineage, in vitro potential, and genome-wide expression analysis, Glia, 2015, vol. 63, no. 8, pp. 1452–1468.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Grigoryan, E.N., Alternative intrinsic cell sources for neural retina regeneration in adult urodelean amphibians, in Strategies for Retinal Tissue Repair and Regeneration in Vertebrates: From Fish to Human, Chiba, Ch., Ed., Kerala, India: Research Signpost, 2007, pp. 35–62.

    Google Scholar 

  37. Grigoryan, E.N., Shared triggering mechanisms of retinal regeneration in lower vertebrates and retinal rescue in higher ones, in Tissue Regeneration—From Basic Biology to Clinical Application, Davies, J., Ed., Croatia: In Tech, 2012, pp. 145–164.

  38. Grigoryan, E.N., Cytological principles of transdifferentiation in vertebrate eye tissues, Doctoral (Biol.) Dissertation, Moscow: Inst. Biol. Razv., Ross. Akad. Nauk, 1998.

  39. Grigoryan, E.N., Competence factors of retinal pigment epithelium cells for reprogramming in the neuronal direction during retinal regeneration in newts, Biol. Bull. (Moscow), 2015, vol. 42, no. 1, pp. 1–11.

    Article  Google Scholar 

  40. Grigoryan, E.N. and Mitashov, V.I., Cultivation of retinal pigment epithelium in the cavity of lensectomized newt eye, Ontogenez, 1985, vol. 16, no. 1, pp. 34–43.

    Google Scholar 

  41. Grigoryan, E.N. and Markitantova, Y.V., Cellular and molecular preconditions for retinal pigment epithelium (RPE) natural reprogramming during retinal regeneration in urodela, Biomedicines, 2016, vol. 4, pp. 10–28.

    Article  CAS  Google Scholar 

  42. Grigoryan, E.N., Ivanova, I.P., and Poplinskaya, V.A., Discovery of new internal sources of the neural retina regeneration after its detachment in newts: morphological and quantitative studies, Biol. Bull. (Moscow), 1996, vol. 23, no. 3, pp. 263–274.

    Google Scholar 

  43. Grigoryan, E.N., Anton, H.J., Poplinskaya, V.A., et al., Signs of Müller cell gliotic response found in the retina of newts exposed to real and simulated microgravity, Adv. Space Res., 2012, vol. 49, no. 10, pp. 1465–1471.

    Article  CAS  Google Scholar 

  44. Gualdoni, S., Baron, M., Lakowski, J., et al., Adult ciliary epithelial cells previously identified as retinal stem cells with potential for retinal repair, fail to differentiate into new rod photorecepors, Stem Cells, 2010, vol. 28, pp. 1048–1059.

    Article  CAS  PubMed  Google Scholar 

  45. Hamon, A., Roger, J.E., Yang, X.J., and Perron, M., Müller glial cell dependent regeneration of the neural retina: an overview across vertebrate model systems, Dev. Dyn., 2016, vol. 245, pp. 727–738.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Harris, W.A. and Perron, M., Molecular recapitulation: the growth of the vertebrate retina, Int. J. Dev. Biol., 1998, vol. 42, no. 3, pp. 299–304.

    CAS  PubMed  Google Scholar 

  47. He, J., Zhang, G., Almeida, A.D., et al., How variable clones build an invariant retina, Neuron, 2012, vol. 75, pp. 786–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hitchcock, P.F. and Raymond, P.A., The teleost retina as a model for developmental and regeneration biology, Zebrafish, 2004, vol. 1, no. 3, pp. 257–271.

    Article  PubMed  Google Scholar 

  49. de Hoz, R., Rojas, B., Ramírez, A.I., et al., Retinal macroglial responses in health and disease, Biomed. Res. Int., 2016, vol. 2016, p. 2954721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Inoue, T., Coles, B.L.K., Dorval, K., et al., Maximizing functional photoreceptor differentiation from adult human retinal stem cells, Stem Cells, 2010, vol. 28, no. 3, pp. 489–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jadhav, A.P., Roesch, K., and Cepko, C.L., Development and neurogenic potential of Müller glial cells in the vertebrate retina, Prog. Ret. Eye Res., 2009, vol. 28, pp. 249–262.

    Article  CAS  Google Scholar 

  52. Johns, P.R., Growth of the adult goldfish eye. III. Source of the new retinal cells, J. Comp. Neurol., 1977, vol. 176, pp. 343–357.

    Article  CAS  PubMed  Google Scholar 

  53. Johnson, P.T., Lewis, G.P., Talaga, K.C., et al., Drusen-associated degeneration in the retina, Invest. Ophthalmol. Vis. Sci., 2003, vol. 44, pp. 4481–4488.

    Article  PubMed  Google Scholar 

  54. Jorstad, N.L., Wilken, M.S., Grimes, W.N., et al., Stimulation of functional neuronal regeneration from Müller glia in adult mice, Nature, 2017, vol. 548, pp. 103–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Karl, M.O., Hayes, S., Nelson, B.R., et al., Stimulation of neural regeneration in the mouse retina, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 49, pp. 19508–19513.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Keefe, J.R., An analysis of urodelean retinal regeneration, J. Exp. Zool., 1973, vol. 184, pp. 185–257.

    Article  CAS  PubMed  Google Scholar 

  57. Kirchhof, B. and Sorgente, N., Pathogenesis of proliferative vitreoretinopathy. Modulation of retinal pigment epithelial cell functions by vitreous and macrophages, Dev. Ophthalmol., 1989, vol. 16, pp. 1–53.

    Article  CAS  PubMed  Google Scholar 

  58. Kiyama, T., Li, H., Gupta, M., et al., Distinct neurogenic potential in the retinal margin and the pars plana of mammalian eye, J. Neurosci., 2012, vol. 32, no. 37, pp. 12797–12807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Knight, J.K. and Raymond, P.A., Retinal pigmented epithelium does not transdifferentiate in adult goldfish, J. Neurobiol., 1995, vol. 27, pp. 447–456.

    Article  CAS  PubMed  Google Scholar 

  60. Kubota, R., Hokoc, J.N., Moshiri, A., et al., A comparative study of neurogenesis in the retinal ciliary marginal zone of homeothermic vertebrates, Brain. Res. Dev. Brain Res., 2002, vol. 134, nos. 1–2, pp. 31–41.

    Article  CAS  PubMed  Google Scholar 

  61. Kuznetsova, A.V., Grigoryan, E.N., and Aleksandrova, M.A., Human adult retinal pigment epithelial cells as potential cell source for retina recovery, Cell Tissue Biol., 2011, vol. 5, no. 5, pp. 495–502.

    Article  Google Scholar 

  62. Lakowski, J., Gonzalez-Cordero, A., West, E.L., et al., Transplantation of photoreceptor precursors isolated via a cell surface biomarker panel from embryonic stem cell-derived self-forming retina, Stem Cells, 2015, vol. 33, no. 8, pp. 2469–2482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Le, T.T., Wroblewski, E., Patel, S., et al., Math5 is required for both early retinal neuron differentiation and cell cycle progression, Dev. Biol., 2006, vol. 295, no. 2, pp. 764–778.

    Article  CAS  PubMed  Google Scholar 

  64. Lenkowski, J.R. and Raymond, P.A., Müller glia: stem cells for generation and regeneration of retinal neurons in teleost fish, Prog. Retin. Eye Res., 2014, vol. 0, pp. 94–123.

    Article  PubMed Central  Google Scholar 

  65. Lewis, G.P., Charteris, D.G., Sethi, C.S., et al., The ability of rapid retinal reattachment to stop or reverse the cellular and molecular events initiated by detachment, Invest. Ophthalmol. Vis. Sci., 2002, vol. 43, pp. 2412–2420.

    PubMed  Google Scholar 

  66. Lewis, G.P., Chapin, E.A., Luna, G., et al., The fate of Müller’s glia following experimental retinal detachment: nuclear migration, cell division, and subretinal glial scar formation, Mol. Vis., 2010, vol. 16, pp. 1361–1372.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, Y., Reca, R.G., Atmaca-Sonmez, P., et al., Retinal pigment epithelium damage enhances expression of chemoattractants and migration of bone marrow-derived stem cells, Invest. Ophthalmol. Vis. Sci., 2006, vol. 47, no. 4, pp. 1646–1652.

    Article  PubMed  Google Scholar 

  68. Li, Y., Atmaca-Sonmez, P., Schanie, C.L., et al., Endogenous bone marrow derived cells express retinal pigment epithelium cell markers and migrate to focal areas of RPE damage, Invest. Ophthalmol. Vis. Sci., 2007, vol. 48, no. 9, pp. 4321–4327.

    Article  PubMed  Google Scholar 

  69. Liu, B., Hunter, D.J., Rooker, S., et al., Wnt signaling promotes Müller cell proliferation and survival after injury, Invest. Ophthalmol. Vis. Sci., 2013, vol. 54, no. 1, pp. 444–453.

    Article  CAS  PubMed  Google Scholar 

  70. Luz-Madrigal, A., Grajales-Esquivel, E., McCorkle, A., et al., Reprogramming of the chick retinal pigmented epithelium after retinal injury, BMC Biol., 2014, vol. 12, pp. 28–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Machalinska, A., Klos, P., Baumert, B., et al., Stem cells are mobilized from the bone marrow into the peripheral circulation in response to retinal pigment epithelium damage—a pathophysiological attempt to induce endogenous regeneration, Curr. Eye Res., 2011, vol. 36, no. 7, pp. 663–672.

    Article  CAS  PubMed  Google Scholar 

  72. Maeda, T., Lee, M.J., Palczewska, G., et al., Retinal pigmented epithelial cells obtained from human induced pluripotent stem cells possess functional visual cycle enzymes in vitro and in vivo, J. Biol. Chem., 2013, vol. 288, no. 48, pp. 34484–34493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Marcucci, F., Murcia-Belmonte, V., Coca, Y., et al., The ciliary margin zone of the mammalian retina generates retinal ganglion cells, Cell Rep., 2016, vol. 17, no. 12, pp. 3153–3164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Markitantova, Yu.V., Makar’ev, E.O., Smirnova, Yu.A., Zinov’eva, R.D., and Mitashov, V.I., Analysis of the expression pattern of regulatory genes Pax6, Prox1, and Six3 during regeneration of eye structures in the newt, Biol. Bull. (Moscow), 2004, vol. 31, no. 5, pp. 428–436.

    Article  CAS  Google Scholar 

  75. Markitantova, Yu.V., Avdonin, P.P., and Grigoryan, E.N., Nucleostemin expression in the course of in situ reprogramming of eye pigment epithelium cells during retina regeneration in adult newt, Tsitologiya, 2014, vol. 56, no. 9, pp. 671–672.

    Google Scholar 

  76. Markitantova, Yu.V., Avdonin, P.P., and Grigoryan, E.N., Identification of the gene encoding nucleostemin in the eye tissues of Pleurodeles waltl, Biol. Bull. (Moscow), 2015, vol. 42, no. 5, pp. 379–386.

    Article  CAS  Google Scholar 

  77. Martínez-Navarrete, G.C., Angulo, A., and Cuenca, N., Gradual morphogenesis of retinal neurons in the peripheral retinal margin of adult monkeys and humans, J. Comp Neurol., 2008, vol. 511, pp. 557–580.

    Article  PubMed  Google Scholar 

  78. Milyushina, L.A., Kuznetsova, A.V., Grigoryan, E.N., and Aleksandrova, M.A., Phenotypic plasticity of retinal pigment epithelial cells of adult human eye in vitro, Klet. Tekhnol. Biol. Med., 2009, vol. 2, pp. 71–76.

    Google Scholar 

  79. Mitashov, V.I., Retinal regeneration in amphibians, Int. J. Dev. Biol., 1997, vol. 41, pp. 893–905.

    CAS  PubMed  Google Scholar 

  80. Mitashov, V.I., Panova, I.G., and Koussoulakos, S., Transdifferentiation potencies of ciliary and pigment epithelium cells of lower vertebrates and mammals, Ontogenez, 2004, vol. 35, no. 4, pp. 395–403.

    Google Scholar 

  81. Miyake, A. and Araki, M., Retinal stem/progenitor cells in the ciliary marginal zone complete retinal regeneration: a study of retinal regeneration in a novel animal model, Dev. Neurobiol., 2014, vol. 74, no. 7, pp. 739–756.

    Article  PubMed  Google Scholar 

  82. Moshiri, A., Close, J., and Reh, T.A., Retinal stem cells and regeneration, Int. J. Dev. Biol., 2004, vol. 48, pp. 1003–1014.

    Article  PubMed  Google Scholar 

  83. Nabeshima, A., Nishibayashi, C., Ueda, Y., et al., Loss of cell-extracellular matrix interaction triggers retinal regeneration accompanied by Rax and Pax6 activation, Genesis, 2013, vol. 51, no. 6, pp. 410–419.

    Article  CAS  PubMed  Google Scholar 

  84. Nakamura, K., Rafiqul, M.R., Takayanagi, M., et al., A transcriptome for the study of early processes of retinal regeneration in the adult newt, Cynops pyrrhogaster, PLoS One, 2014, vol. 9. e10983.

    Google Scholar 

  85. Ooto, S., Akagi, T., Kageyama, R., et al., Potential for neural regeneration after neurotoxic injury in the adult mammalian retina, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 37, pp. 13654–13659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Osakada, F., Ooto, S., Akagi, T., et al., Wnt signaling promotes regeneration in the retina of adult mammals, J. Neurosci., 2007, vol. 27, no. 15, pp. 4210–4219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Otteson, D.C., D’Costa, A.R., and Hitchcock, P.F., Putative stem cells and the lineage of rod photoreceptors in the mature retina of the goldfish, Dev. Biol., 2001, vol. 232, no. 1, pp. 62–76.

    Article  CAS  PubMed  Google Scholar 

  88. Otteson, D.C. and Hitchcock, P.F., Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration, Vision Res., 2003, vol. 43, pp. 927–936.

    Article  CAS  PubMed  Google Scholar 

  89. Perron, M., Kanekar, S., Vetter, M.L., and Harris, W.A., The genetic sequence of retinal development in the ciliary margin of the Xenopus eye, Dev. Biol., 1998, vol. 199, pp. 185–200.

    Article  CAS  PubMed  Google Scholar 

  90. Pesaresi, M., Bonilla-Pons, S.A., Simonte, G., et al., Endogenous mobilization of bone-marrow cells into the murine retina induces fusion-mediated reprogramming of Müller glia cells, EbioMedicine, 2018, vol. 30, pp. 38–51.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Pollak, J., Wilken, M.S., Ueki, Y., et al., ASCL1 reprograms mouse Müller glia into neurogenic retinal progenitors, Development, 2013, vol. 140, pp. 2619–2631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Prada, C., Puga, J., Perez-Mendez, L., et al., Spatial and temporal patterns of neurogenesis in the chick retina, Eur. J. Neurosci., 1991, vol. 3, no. 6, pp. 559–569.

    Article  PubMed  Google Scholar 

  93. Raymond, P.A., Reifler, M.J., and Rivlin, P.K., Regeneration of goldfish retina: rod precursors are a likely source of regenerated cells, J. Neurobiol., 1988, vol. 19, no. 5, pp. 431–463.

    Article  CAS  PubMed  Google Scholar 

  94. Raymond, P.A., Barthel, L.K., Bernardos, R.L., and Perkowski, J.J., Molecular characterization of retinal stem cells and their niches in adult zebrafish, BMC Dev. Biol., 2006, vol. 6, p. 36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Roesch, K., Jadhav, A.P., Trimarchi, J.M., et al., The transcriptome of retinal Müller glial cells, J. Comp. Neurol., 2008, vol. 509, no. 2, pp. 225–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sakami, S., Hisatomi, O., Sakakibara, S., et al., Downregulation of Otx2 in the dedifferentiated RPE cells of regenerating newt retina, Brain Res. Dev. Brain Res., 2005, vol. 12, pp. 49–59.

    Article  CAS  Google Scholar 

  97. Salero, E., Blenkinsop, T.A., Corneo, B., et al., Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives, Cell Stem Cell, 2012, vol. 10, pp. 88–95.

  98. Sanchez-Farias, A. and Candal, E., Doublecortin is widely expressed in the developing and adult retina of sharks, Exp. Eye Res., 2015, vol. 134, pp. 90–100.

    Article  CAS  PubMed  Google Scholar 

  99. Shaham, O., Menuchin, Y., Farhy, C., and Ashery-Padan, R., Pax6: a multi-level regulator of ocular development, Prog. Retin. Eye Res., 2012, vol. 31, no. 5, pp. 351–376.

    Article  CAS  PubMed  Google Scholar 

  100. Sluch, V.M. and Zack, D.J., Stem cells, retinal ganglion cells, and glaucoma, Dev. Ophthalmol., 2014, vol. 53, pp. 111–121.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Soules, K.A. and Link, B.A., Morphogenesis of the anterior segment in the zebrafish eye, BMC Dev. Biol., 2005, vol. 5, p. 12.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Spence, J.R., Madhavan, M., Ewing, J.D., et al., The hedgehog pathway is a modulator of retina regeneration, Development, 2004, vol. 12, pp. 4607–4621.

    Article  CAS  Google Scholar 

  103. Spence, J.R., Madhavan, M., Aycinena, J.C., and Del Rio-Tsonis, K., Retina regeneration in the chick embryo is not induced by spontaneous Mitf downregulation but requires FGF/FGFR/MEK/Erk dependent upregulation of Pax6, Mol. Vis., 2007, vol. 12, pp. 57–65.

    Google Scholar 

  104. Steinfeld, J., Steinfeld, I., Bausch, A., et al., BMP-induced reprogramming of the neural retina into retinal pigment epithelium requires Wnt signalling, Biol. Open, 2017, vol. 6, no. 7, pp. 979–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Stenkamp, D.L., Neurogenesis in the fish retina, Int. Rev. Cytol., 2007, vol. 259, pp. 173–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Straznicky, K. and Gaze, R.M., The growth of the retina in Xenopus laevis: an autoradiographic study, J. Embryol. Exp. Morphol., 1971, vol. 26, pp. 67–79.

    CAS  PubMed  Google Scholar 

  107. Stroeva, O.G. and Mitashov, V.I., Retinal pigment epithelium: proliferation and differentiation during development and regeneration, Int. Rev. Cytol., 1983, vol. 83, pp. 221–293.

    Article  CAS  PubMed  Google Scholar 

  108. Sukhdeo, K., Koch, C.E., Miller, T.E., et al., The Lgr5 transgene is expressed specifically in glycinergic amacrine cells in the mouse retina, Exp. Eye Res., 2014, vol. 119, pp. 106–110.

    Article  CAS  PubMed  Google Scholar 

  109. Sun, G., Asami, M., Ohta, H., et al., Retinal stem/progenitor properties of iris pigment epithelial cells, Dev. Biol., 2006, vol. 289, no. 1, pp. 243–252.

    Article  CAS  PubMed  Google Scholar 

  110. Svistunov, S.A. and Mitashov, V.I., Radioautographic study of proliferation of retinal pigment epithelial cells in albino clawed frogs, Ontogenez, 1983, vol. 14, pp. 382–389.

    CAS  PubMed  Google Scholar 

  111. Todd, L., Suarez, L., Squires, N., et al., Comparative analysis of glucagonergic cells, glia and the circumferential marginal zone in the reptilian retina, J. Comp. Neurol., 2016, vol. 1, pp. 74–89.

    Article  CAS  Google Scholar 

  112. Todd, L., Suarez, L., Quinn, C., and Fischer, A.J., Retinoic acid-signaling regulates the proliferative and neurogenic capacity of Müller glia-derived progenitor cells in the avian retina, Stem Cells, 2017, vol. 65, pp. 1640–1655.

    Google Scholar 

  113. Tomita, M., Adachi, Y., Yamada, H., et al., Bone marrow-derived stem cells can differentiate into retinal cells in injured rat retina, Stem Cells, 2002, vol. 20, pp. 279–283.

    Article  CAS  PubMed  Google Scholar 

  114. Tomoyuki, I., Coles, B.L.K., Dorval, K., et al., Maximizing functional photoreceptor differentiation from adult human retinal stem cells, Stem Cells, 2010, vol. 28, no. 3, pp. 489–500.

    Google Scholar 

  115. Tropepe, V., Coles, B.L., Chiasson, B.J., et al., Retinal stem cells in the adult mammalian eye, Science, 2000, vol. 287, pp. 2032–2036.

    Article  CAS  PubMed  Google Scholar 

  116. Turner, D.L. and Cepko, C.L., A common progenitor for neurons and glia persists in rat retina late in development, Nature, 1987, vol. 328, pp. 131–136.

    Article  CAS  PubMed  Google Scholar 

  117. Wan, J., Zheng, H., Xiao, H.L., et al., Sonic hedgehog promotes stem-cell potential of Muller glia in the mammalian retina, Biochem. Biophys. Res. Commun., 2007, vol. 363, no. 2, pp. 347–354.

    Article  CAS  PubMed  Google Scholar 

  118. Wan, Y., Almeida, A.D., Rulands, S., et al., The ciliary marginal zone of the zebrafish retina: clonal and time-lapse analysis of a continuously growing tissue, Development, 2016, vol. 143, no. 7, pp. 1099–1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, J.C. and Harris, W.A., The role of combinational coding by homeodomain and bhlh transcription factors in retinal cell fate specification, Dev. Biol., 2005, vol. 285, pp. 101–115.

    Article  CAS  PubMed  Google Scholar 

  120. Wehman, A.M., Staub, W., Meyers, J.R., et al., Genetic dissection of the zebrafish retinal stem-cell compartment, Dev. Biol., 2005, vol. 281, no. 1, pp. 53–65.

    Article  CAS  PubMed  Google Scholar 

  121. Williams, A.L. and Bohnsack, B.L., Neural crest derivatives in ocular development: discerning the eye of the storm, Birth Defects Res. C Embryo Today, 2015, vol. 105, no. 2, pp. 87–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xu, S., Sunderland, M.E., Coles, B.L., et al., The proliferation and expansion of retinal stem cells require functional Pax6, Dev. Biol., 2007, vol. 304, pp. 713–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Xue, X.Y. and Harris, W.A., Using myc genes to search for stem cells in the ciliary margin of the Xenopus retina, Dev. Neurobiol., 2012, vol. 72, pp. 475–490.

    Article  CAS  PubMed  Google Scholar 

  124. Yasumuro, H., Sakurai, K., Toyama, F., et al., Implications of a multi-step trigger of retinal regeneration in the adult newt, Biomedicines, 2017, vol. 5, no. 2, p. 25.

    Article  CAS  PubMed Central  Google Scholar 

  125. Yoshii, C., Ueda, Y., Okamoto, M., and Araki, M., Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina, Dev. Biol., 2007, vol. 303, no. 1, pp. 45–50.

    Article  CAS  PubMed  Google Scholar 

  126. Yu, H., Vu, T.H.K., Cho, K-S., et al., Mobilizing endogenous stem cells for retinal repair, Transl. Res., 2014, vol. 163, no. 4, pp. 387–398.

    Article  CAS  PubMed  Google Scholar 

  127. Zhang, J. and Jiao, J., Molecular biomarkers for embryonic and adult neural stem cell and neurogenesis, Biomed. Res. Int., 2015, vol. 2015, p. 727542.

    PubMed  PubMed Central  Google Scholar 

  128. Zhao, C., Tao, Z., Xue, L., et al., Lin28b stimulates the reprograming of rat Müller glia to retinal progenitors, Exp. Cell Res., 2017, vol. 1, no. 352, pp. 164–174.

    Article  CAS  Google Scholar 

  129. Zuber, M.E., Gestri, G., Viczian, A.S., et al., Specification of the vertebrate eye by a network of eye field transcription factors, Development, 2003, vol. 130, no. 21, pp. 5155–5167.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was conducted in the framework of the Governmental Assignment to the Koltzov Institute of Developmental Biology, Russian Academy of Sciences, no. 0108-2018-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Grigoryan.

Additional information

Translated by E. Shvetsov

Abbreviations: CMZ, ciliary marginal zone; RPE, retinal pigment epithelium; MG, Müller glia; TF, transcription factor; VM, vascular membrane; BM, bone marrow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoryan, E.N. Endogenous Cell Sources for Eye Retina Regeneration in Vertebrate Animals and Humans. Russ J Dev Biol 49, 314–326 (2018). https://doi.org/10.1134/S106236041901003X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106236041901003X

Keywords:

Navigation