Skip to main content

Stem Cells and Regeneration in the Xenopus Retina

  • Chapter
  • First Online:
Regenerative Biology of the Eye

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The ability to regenerate damaged cells in the retina varies tremendously among species, being restricted for most of them to specific developmental stages. Regarding vertebrates, only the newt was thought to exhibit full regenerative capacity upon retinectomy in the adulthood. The recent discovery that the anuran amphibian Xenopus can regenerate its retina after metamorphosis opened new avenues to investigate the cellular and molecular mechanisms involved in this process. In this review, we provide an historical overview of regeneration studies in Xenopus. Particular emphasis is given to the cellular sources contributing to retinal replacement, the involvement of tissue interactions and the importance of the injury paradigm. We also describe recent progress and promises in the field brought by the development of 3D tissue culture methods and transgenic Xenopus models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMP:

Bone morphogenetic protein

BrdU:

5-Bromo-2′-deoxyuridine

CMZ:

Ciliary marginal zone

DNA:

Deoxyribonucleic acid

EdU:

5-Ethynyl-2′-deoxyuridine

EFTF:

Eye field transcription factors

ERK:

Extracellular signal-regulated kinases

FGF:

Fibroblast growth factor

GFP:

Green fluorescent protein

Hes4:

Hairy and enhancer of split 4

iCasp9:

Inducible caspase 9

MEK:

Mitogen-activated or extracellular signal-regulated protein kinase

Mtz:

Metronidazole

NTR:

Nitroreductase

Pax6:

Paired box protein 6

Rax:

Retina and anterior neural fold homeobox gene

RPE:

Retinal pigmented epithelium

RPE65:

Retinal pigment epithelium-specific 65 kDa protein

RVM:

Retinal vascular membrane

shRNA:

Small hairpin RNA

References

  1. Stone LS (1950) The role of retinal pigment cells in regenerating neural retinae of adult salamander eyes. J Exp Zool 113(1):9–31

    Article  Google Scholar 

  2. Philipeaux JM (1880) Note sur la production de l’oeil chez la salamandre aquatique. Gaz Med Paris 51:453–457

    Google Scholar 

  3. Griffini L, Marcchio G (1889) Sulla rigenerazione totale della retina nei tritoni. Reforma Medica, Janner

    Google Scholar 

  4. Colucci V (1891) Sulla rigenerazione parziale dell’ occhio nei Tritoni-istogenesi e sviluppo. Studio sperimentale. Mem R Accad Sci Ist Bologna 51:167–203

    Google Scholar 

  5. Wolff G (1895) Entwicklungsphysiologische Studien. I. Die regeneration der Urodelenlinse. Roux Arch Entw Mech Org 1:380–390

    Google Scholar 

  6. Levine R (1975) Regeneration of the retina in the adult newt, Triturus cristatus, following surgical division of the eye by a limbal incision. J Exp Zool 192(3):363–380

    Article  CAS  PubMed  Google Scholar 

  7. Keefe JR (1973) An analysis of urodelian retinal regeneration. II. Ultrastructural features of retinal regeneration in Notophthalmus viridescens. J Exp Zool 184(2):207–232

    Article  CAS  PubMed  Google Scholar 

  8. Keefe JR (1973) An analysis of urodelian retinal regeneration. I. Studies of the cellular source of retinal regeneration in Notophthalmus viridescens utilizing 3H-thymidine and colchicine. J Exp Zool 184(2):185–206

    Article  CAS  PubMed  Google Scholar 

  9. Reyer RW (1971) DNA synthesis and the incorporation of labeled iris cells into the lens during lens regeneration in adult newts. Dev Biol 24(4):533–558

    Article  CAS  PubMed  Google Scholar 

  10. Stone LS (1950) Neural retina degeneration followed by regeneration from surviving retinal pigment cells in grafted adult salamander eyes. Anat Rec 106(1):89–109

    Article  CAS  PubMed  Google Scholar 

  11. Mitashov VI (1996) Mechanisms of retina regeneration in urodeles. Int J Dev Biol 40(4):833–844

    CAS  PubMed  Google Scholar 

  12. Stroeva OG, Mitashov VI (1983) Retinal pigment epithelium: proliferation and differentiation during development and regeneration. Int Rev Cytol 83:221–293

    Article  CAS  PubMed  Google Scholar 

  13. Reyer RW (1977) The amphibian eye: development and regeneration. In: Crescitelli F (ed) Handbook of sensory physiology YII/5, part A. Springer, Berlin, pp 309–390

    Google Scholar 

  14. Beetschen JC (1996) How did urodele embryos come into prominence as a model system? Int J Dev Biol 40(4):629–636

    CAS  PubMed  Google Scholar 

  15. Beck CW, Izpisua Belmonte JC, Christen B (2009) Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms. Dev Dyn 238(6):1226–1248

    Article  CAS  PubMed  Google Scholar 

  16. Underwood LW, Carruth MR, Vandecar-Ide A, Ide CF (1993) Relationship between local cell division and cell displacement during regeneration of embryonic Xenopus eye fragments. J Exp Zool 265(2):165–177

    Article  CAS  PubMed  Google Scholar 

  17. Underwood LW, Ide CF (1992) An autoradiographic time study during regeneration in fully differentiated Xenopus eyes. J Exp Zool 262(2):193–201

    Article  CAS  PubMed  Google Scholar 

  18. Wunsh LM, Ide CF (1990) Fully differentiated Xenopus eye fragments regenerate to form pattern-duplicated visuo-tectal projections. J Exp Zool 254(2):192–201

    Article  CAS  PubMed  Google Scholar 

  19. Ide CF (1988) Role of cell displacement, cell division, and fragment size in pattern formation during embryonic retinal regeneration in Xenopus. Acta Biol Hung 39(2–3):179–189

    CAS  PubMed  Google Scholar 

  20. Bosco L (1988) Transdifferentiation of ocular tissues in larval Xenopus laevis. Differentiation 39(1):4–15

    Article  CAS  PubMed  Google Scholar 

  21. Ide CF, Blankenau A, Morrow J, Tompkins R (1986) Cell movements and novel growth patterns during early healing in regenerating embryonic Xenopus retina. Prog Clin Biol Res 217B:133–136

    CAS  PubMed  Google Scholar 

  22. Ide CF, Reynolds P, Tompkins R (1984) Two healing patterns correlate with different adult neural connectivity patterns in regenerating embryonic Xenopus retina. J Exp Zool 230(1):71–80

    Article  CAS  PubMed  Google Scholar 

  23. Hitchcock P, Ochocinska M, Sieh A, Otteson D (2004) Persistent and injury-induced neurogenesis in the vertebrate retina. Prog Retin Eye Res 23(2):183–194

    Article  PubMed  Google Scholar 

  24. Sologub AA (1977) Mechanisms of repression and derepression of artificial transformation of pigmented epithelium into retina in Xenopus laevis. Roux Arch Dev Biol 182(4):277–291

    Article  Google Scholar 

  25. Filoni S (2009) Retina and lens regeneration in anuran amphibians. Semin Cell Dev Biol 20(5):528–534

    Article  PubMed  Google Scholar 

  26. Araki M (2007) Regeneration of the amphibian retina: role of tissue interaction and related signaling molecules on RPE transdifferentiation. Dev Growth Differ 49(2):109–120

    Article  PubMed  Google Scholar 

  27. Yoshii C, Ueda Y, Okamoto M, Araki M (2007) Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina. Dev Biol 303(1):45–56

    Article  CAS  PubMed  Google Scholar 

  28. Henry JJ, Wever JM, Vergara MN, Fukui L (2008) Xenopus, an ideal vertebrate system for studies of eye development and regeneration. In: Tsonis PA (ed) Animals models in eye research. Academic, San Diego, pp 57–92

    Chapter  Google Scholar 

  29. Araki M (2007) A comparative study of amphibian retinal regeneration by tissue culture technology. In: Chiba C (ed) Strategies for retinal repair and regeneration in vertebrates: from fish to human. Research Signpost, Trivandrum, pp 77–95

    Google Scholar 

  30. Ueda Y, Mizuno N, Araki M (2012) Transgenic Xenopus laevis with the ef1-alpha promoter as an experimental tool for amphibian retinal regeneration study. Genesis 50(8):642–650

    Article  CAS  PubMed  Google Scholar 

  31. Fuhrmann S, Zou C, Levine EM (2013) Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res. In press

    Google Scholar 

  32. Chiba C (2013) The retinal pigment epithelium: an important player of retinal disorders and regeneration. Exp Eye Res. In press

    Google Scholar 

  33. Reh TA, Nagy T (1987) A possible role for the vascular membrane in retinal regeneration in Rana catesbienna tadpoles. Dev Biol 122(2):471–482

    Article  CAS  PubMed  Google Scholar 

  34. Sakaguchi DS, Janick LM, Reh TA (1997) Basic fibroblast growth factor (FGF-2) induced transdifferentiation of retinal pigment epithelium: generation of retinal neurons and glia. Dev Dyn 209(4):387–398

    Article  CAS  PubMed  Google Scholar 

  35. Nagy T, Reh TA (1994) Inhibition of retinal regeneration in larval Rana by an antibody directed against a laminin-heparan sulfate proteoglycan. Brain Res Dev Brain Res 81(1):131–134

    Article  CAS  PubMed  Google Scholar 

  36. Reh TA, Nagy T, Gretton H (1987) Retinal pigmented epithelial cells induced to transdifferentiate to neurons by laminin. Nature 330(6143):68–71

    Article  CAS  PubMed  Google Scholar 

  37. Kuriyama F, Ueda Y, Araki M (2009) Complete reconstruction of the retinal laminar structure from a cultured retinal pigment epithelium is triggered by altered tissue interaction and promoted by overlaid extracellular matrices. Dev Neurobiol 69(14):950–958

    Article  CAS  PubMed  Google Scholar 

  38. Mitsuda S, Yoshii C, Ikegami Y, Araki M (2005) Tissue interaction between the retinal pigment epithelium and the choroid triggers retinal regeneration of the newt Cynops pyrrhogaster. Dev Biol 280(1):122–132

    Article  CAS  PubMed  Google Scholar 

  39. Ikegami Y, Mitsuda S, Araki M (2002) Neural cell differentiation from retinal pigment epithelial cells of the newt: an organ culture model for the urodele retinal regeneration. J Neurobiol 50(3):209–220

    Article  PubMed  Google Scholar 

  40. Nabeshima A, Nishibayashi C, Ueda Y, Ogino H, Araki M (2013) Loss of cell-extracellular matrix interaction triggers retinal regeneration accompanied by Rax and Pax6 activation. Genesis 51(6):410–419

    Article  CAS  PubMed  Google Scholar 

  41. Zuber ME, Gestri G, Viczian AS, Barsacchi G, Harris WA (2003) Specification of the vertebrate eye by a network of eye field transcription factors. Development 130(21):5155–5167

    Article  CAS  PubMed  Google Scholar 

  42. Arresta E, Bernardini S, Bernardini E, Filoni S, Cannata SM (2005) Pigmented epithelium to retinal transdifferentiation and Pax6 expression in larval Xenopus laevis. J Exp Zool A Comp Exp Biol 303(11):958–967

    Article  PubMed  Google Scholar 

  43. Kaneko Y, Matsumoto G, Hanyu Y (1999) Pax-6 expression during retinal regeneration in the adult newt. Dev Growth Differ 41(6):723–729

    Article  CAS  PubMed  Google Scholar 

  44. Martinez-De Luna RI, Kelly LE, El-Hodiri HM (2011) The Retinal Homeobox (Rx) gene is necessary for retinal regeneration. Dev Biol 353(1):10–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Vergara MN, Del Rio-Tsonis K (2009) Retinal regeneration in the Xenopus laevis tadpole: a new model system. Mol Vis 15:1000–1013

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Yoshikawa T et al (2012) MEK-ERK and heparin-susceptible signaling pathways are involved in cell-cycle entry of the wound edge retinal pigment epithelium cells in the adult newt. Pigment Cell Melanoma Res 25(1):66–82

    Article  CAS  PubMed  Google Scholar 

  47. Spence JR, Madhavan M, Aycinena JC, Del Rio-Tsonis K (2007) Retina regeneration in the chick embryo is not induced by spontaneous Mitf downregulation but requires FGF/FGFR/MEK/Erk dependent upregulation of Pax6. Mol Vis 13:57–65

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Spence JR et al (2004) The hedgehog pathway is a modulator of retina regeneration. Development 131(18):4607–4621

    Article  CAS  PubMed  Google Scholar 

  49. Straznicky K, Gaze RM (1971) The growth of the retina in Xenopus laevis: an autoradiographic study. J Embryol Exp Morphol 26(1):67–79

    CAS  PubMed  Google Scholar 

  50. Straznicky C, Hiscock J (1984) Post-metamorphic retinal growth in Xenopus. Anat Embryol 169(1):103–109

    Article  CAS  PubMed  Google Scholar 

  51. Grant S, Keating MJ (1986) Ocular migration and the metamorphic and postmetamorphic maturation of the retinotectal system in Xenopus laevis: an autoradiographic and morphometric study. J Embryol Exp Morphol 92:43–69

    CAS  PubMed  Google Scholar 

  52. Hollyfield JG (1971) Differential growth of the neural retina in Xenopus laevis larvae. Dev Biol 24(2):264–286

    Article  CAS  PubMed  Google Scholar 

  53. Wetts R, Serbedzija GN, Fraser SE (1989) Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina. Dev Biol 136(1):254–263

    Article  CAS  PubMed  Google Scholar 

  54. Centanin L, Hoeckendorf B, Wittbrodt J (2011) Fate restriction and multipotency in retinal stem cells. Cell Stem Cell 9(6):553–562

    Article  CAS  PubMed  Google Scholar 

  55. Casarosa S et al (2005) Genetic analysis of metamorphic and premetamorphic Xenopus ciliary marginal zone. Dev Dyn 233(2):646–651

    Article  CAS  PubMed  Google Scholar 

  56. Harris WA, Perron M (1998) Molecular recapitulation: the growth of the vertebrate retina. Int J Dev Biol 42(3):299–304

    CAS  PubMed  Google Scholar 

  57. Henningfeld K, Locker M, Perron M (2007) Neuron and glial cell differentiation in Xenopus. Funct Dev Embryol 1(1):26–36

    Google Scholar 

  58. Locker M, Borday C, Perron M (2009) Stemness or not stemness? Current status and perspectives of adult retinal stem cells. Curr Stem Cell Res Ther 4(2):118–130

    Article  CAS  PubMed  Google Scholar 

  59. Perron M, Kanekar S, Vetter ML, Harris WA (1998) The genetic sequence of retinal development in the ciliary margin of the Xenopus eye. Dev Biol 199(2):185–200

    Article  CAS  PubMed  Google Scholar 

  60. Perron M et al (2003) A novel function for Hedgehog signalling in retinal pigment epithelium differentiation. Development 130(8):1565–1577

    Article  CAS  PubMed  Google Scholar 

  61. Xue XY, Harris WA (2012) Using myc genes to search for stem cells in the ciliary margin of the Xenopus retina. Dev Neurobiol 72(4):475–490

    Article  CAS  PubMed  Google Scholar 

  62. Parain K et al (2012) A large scale screen for neural stem cell markers in Xenopus retina. Dev Neurobiol 72(4):491–506

    Article  CAS  PubMed  Google Scholar 

  63. Gilchrist MJ, Pollet N (2012) Databases of gene expression in Xenopus development. Methods Mol Biol 917:319–345

    Article  CAS  PubMed  Google Scholar 

  64. Gilchrist MJ et al (2009) Database of queryable gene expression patterns for Xenopus. Dev Dyn 238(6):1379–1388

    Article  CAS  PubMed  Google Scholar 

  65. El Yakoubi W et al (2012) Hes4 controls proliferative properties of neural stem cells during retinal ontogenesis. Stem Cells 30(12):2784–2795

    Article  PubMed Central  PubMed  Google Scholar 

  66. Mitashov VI, Maliovanova SD (1982) Cellular proliferative potentials of the pigment and ciliated epithelium of the eye in clawed toads normally and during regeneration. Ontogenez 13(3):228–234

    CAS  PubMed  Google Scholar 

  67. Lee DC, Hamm LM, Moritz OL (2013) Xenopus laevis tadpoles can regenerate neural retina lost after physical excision but cannot regenerate photoreceptors lost through targeted ablation. Invest Ophthalmol Vis Sci 54(3):1859–1867

    Article  CAS  PubMed  Google Scholar 

  68. Miyake A, Araki M (2014) Retinal stem/progenitor cells in the ciliary marginal zone complete retinal regeneration: a study of retinal regeneration in a novel animal model. Dev Neurobiol. In press

    Google Scholar 

  69. Locker M et al (2006) Hedgehog signaling and the retina: insights into the mechanisms controlling the proliferative properties of neural precursors. Genes Dev 20(21):3036–3048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Agathocleous M, Locker M, Harris WA, Perron M (2007) A general role of hedgehog in the regulation of proliferation. Cell Cycle 6(2):156–159

    Article  CAS  PubMed  Google Scholar 

  71. Denayer T et al (2008) Canonical Wnt signaling controls proliferation of retinal stem/progenitor cells in postembryonic Xenopus eyes. Stem Cells 26(8):2063–2074

    Article  CAS  PubMed  Google Scholar 

  72. Locker M, El Yakoubi W, Mazurier N, Dullin JP, Perron M (2010) A decade of mammalian retinal stem cell research. Arch Ital Biol 148(2):59–72

    CAS  PubMed  Google Scholar 

  73. Borday C et al (2012) Antagonistic cross-regulation between Wnt and Hedgehog signalling pathways controls post-embryonic retinal proliferation. Development 139(19):3499–3509

    Article  CAS  PubMed  Google Scholar 

  74. Barbosa-Sabanero K et al (2012) Lens and retina regeneration: new perspectives from model organisms. Biochem J 447(3):321–334

    Article  CAS  PubMed  Google Scholar 

  75. Wilson JM et al (2010) RNA helicase Ddx39 is expressed in the developing central nervous system, limb, otic vesicle, branchial arches and facial mesenchyme of Xenopus laevis. Gene Expr Patterns 10(1):44–52

    Article  CAS  PubMed  Google Scholar 

  76. Fischer AJ, Reh TA (2003) Potential of Muller glia to become neurogenic retinal progenitor cells. Glia 43(1):70–76

    Article  PubMed  Google Scholar 

  77. Lamba D, Karl M, Reh T (2008) Neural regeneration and cell replacement: a view from the eye. Cell Stem Cell 2(6):538–549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Jadhav AP, Roesch K, Cepko CL (2009) Development and neurogenic potential of Muller glial cells in the vertebrate retina. Prog Retin Eye Res 28(4):249–262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Fischer AJ, Bongini R (2010) Turning Muller glia into neural progenitors in the retina. Mol Neurobiol 42(3):199–209

    Article  CAS  PubMed  Google Scholar 

  80. Karl MO, Reh TA (2010) Regenerative medicine for retinal diseases: activating endogenous repair mechanisms. Trends Mol Med 16(4):193–202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Grigorian EN, Poplinskaia VA (1999) Discovery of internal sources of the neural retinal regeneration after its detachment in Pleurodeles. II. The radioautography study. Izv Akad Nauk Ser Biol 5:583–591

    PubMed  Google Scholar 

  82. Grigorian EN, Ivanova IP, Poplinskaia VA (1996) The discovery of new internal sources of neural retinal regeneration after its detachment in newts. Morphological and quantitative research. Izv Akad Nauk Ser Biol 3:319–332

    PubMed  Google Scholar 

  83. Choi RY et al (2011) Cone degeneration following rod ablation in a reversible model of retinal degeneration. Invest Ophthalmol Vis Sci 52(1):364–373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Chesneau A et al (2008) Transgenesis procedures in Xenopus. Biol Cell 100(9):503–521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Tam BM, Xie G, Oprian DD, Moritz OL (2006) Mislocalized rhodopsin does not require activation to cause retinal degeneration and neurite outgrowth in Xenopus laevis. J Neurosci 26(1):203–209

    Article  CAS  PubMed  Google Scholar 

  86. Tam BM, Moritz OL (2007) Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin. J Neurosci 27(34):9043–9053

    Article  CAS  PubMed  Google Scholar 

  87. Tam BM, Moritz OL (2006) Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 47(8):3234–3241

    Article  PubMed  Google Scholar 

  88. Zhang R, Oglesby E, Marsh-Armstrong N (2008) Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light. Exp Eye Res 86(4):612–621

    Article  CAS  PubMed  Google Scholar 

  89. Lee DC et al (2012) Dysmorphic photoreceptors in a P23H mutant rhodopsin model of retinitis pigmentosa are metabolically active and capable of regenerating to reverse retinal degeneration. J Neurosci 32(6):2121–2128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Lin-Jones J, Parker E, Wu M, Knox BE, Burnside B (2003) Disruption of kinesin II function using a dominant negative-acting transgene in Xenopus laevis rods results in photoreceptor degeneration. Invest Ophthalmol Vis Sci 44(8):3614–3621

    Article  PubMed  Google Scholar 

  91. Wheway G, Parry DA, Johnson CA (2013) The role of primary cilia in the development and disease of the retina. Organogenesis 10(1):1–17

    Google Scholar 

  92. Curado S et al (2007) Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 236(4):1025–1035

    Article  CAS  PubMed  Google Scholar 

  93. Hamm LM, Tam BM, Moritz OL (2009) Controlled rod cell ablation in transgenic Xenopus laevis. Invest Ophthalmol Vis Sci 50(2):885–892

    Article  PubMed  Google Scholar 

  94. Sirko S et al (2013) Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog. [corrected]. Cell Stem Cell 12(4):426–439

    Article  CAS  PubMed  Google Scholar 

  95. Galliot B, Chera S (2010) The Hydra model: disclosing an apoptosis-driven generator of Wnt-based regeneration. Trends Cell Biol 20(9):514–523

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are supported by grants from l’Agence Nationale de la Recherche (ANR), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Retina France, and the Ville de Paris Région Ile de France Medicen through the AMBRe consortium. M.H. was supported by a fellowship from ANR and Région Ile de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muriel Perron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hidalgo, M., Locker, M., Chesneau, A., Perron, M. (2014). Stem Cells and Regeneration in the Xenopus Retina. In: Pébay, A. (eds) Regenerative Biology of the Eye. Stem Cell Biology and Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0787-8_4

Download citation

Publish with us

Policies and ethics