Skip to main content
Log in

The Pax2 and Pax6 Transcription Factors in the Optic Nerve and Brain of Trout Oncorhynchus mykiss after a Mechanical Eye Injury

  • Mechanisms of Cell Proliferation and Differentiation
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The distribution of the Pax2+ transcription factor in the optic nerve after a mechanical eye injury on the side of damage and in the contralateral nerve has been studied in the trout Oncorhynchus mykiss. It has been found that injury of the optic nerve in this fish species causes Pax2+ reactive astrocytes involved in the initial stages of optic nerve axon regeneration to increase in number, especially in the area of the head and the proximal part of the optic nerve. As the optic nerve in trout is damaged, a significant growth of the heterogeneous population of Pax6+ cells occurs in the brain divisions that have direct retinal inputs, diencephalon, and optic tectum. A part of the Pax6+ cells have an undifferentiated phenotype and are a component of reactive neurogenic niches located in the periventricular zone and parenchymal regions of the brain. Another population of Pax6+ cells has the radial glial phenotype and appears as a result of activation of the constitutive neurogenic domains also within the newly formed reactive neurogenic niches. Thus, due to the optic nerve injury, a pronounced neurogenic response associated with the appearance of reactive neurogenic niches and radial glia arises both in the brain divisions with direct retinal projections and in those lacking the retinal projections as well as in remote regions. The results obtained indicate that the damage to the optic nerve causes an increased reactive neurogenesis in the brain of adult trout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Pax2–:

Pax2-immunonegative

Pax2+:

Pax2-immunopositive

Pax6–:

Pax6-immunonegative

Pax6+:

Pax6- immunopositive

Vv:

ventral zone of the telencephalon ventral region

Vd:

dorsal zone of the telencephalon ventral region

Vl:

lateral zone of the telencephalon ventral region

Vth:

ventral thalamus

ONH:

optic nerve head

Dd:

dorsal zone of the telencephalon dorsal region

Dl:

lateral zone of the telencephalon dorsal region

Dth:

dorsal thalamus

Mth:

medial thalamus

Dc:

central zone of the telencephalon dorsal region

PTR:

posterior tuberal region

IHC:

immunohistochemistry

IOS:

intraorbital segment

CeCr:

cerebellar crest

SM:

stratum marginale (marginal layer)

NSC:

neural stem cell

ON:

optic nerve

OD:

optical density

OT:

optic tectum

PVZ:

periventricular zone

SGP:

stratum griseum periventriculare (periventricular gray layer)

PZ:

proliferative zone

POm:

magnocellular nucleus of the preoptic region

POp:

parvocellular nucleus of the preoptic region

RG:

radial glia

RSC:

reticulospinal cells

RF:

reticular formation

SAC:

stratum album centrale (central white layer)

SGAC:

stratum griseum et album centrale (central gray and white layer)

SGC:

stratum griseum centrale (central gray layer)

OLN:

octavolateral efferent neurons

References

  • Adolf, B., Chapouton, P., Lam, C.S., et al., Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon, Dev. Biol., 2006, vol. 295, pp. 278–293.

    Article  PubMed  CAS  Google Scholar 

  • Becker, C.G. and Becker, T., Adult zebrafish as a model for successful central nervous system regeneration, Restor. Neurol. Neurosci., 2008, vol. 26, pp. 71–80.

    PubMed  Google Scholar 

  • Berberoglu, M.A., Dong, Z., Li, G., et al., Heterogeneously expressed fezf2 patterns gradient notch activity in balancing the quiescence, proliferation, and differentiation of adult neural stem cells, J. Neurosci., 2014, vol. 34, pp. 13911–13923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ganz, J., Kaslin, J., Hochmann, S., et al., Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon, Glia, 2010, vol. 58, pp. 1345–1363.

    PubMed  Google Scholar 

  • García, D.M. and Koke, J.R., Astrocytes as gate-keepers in optic nerve regeneration—a mini-review, Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol., 2009, vol. 152, pp. 135–138.

    Article  CAS  Google Scholar 

  • Gerber, J.K., Richter, T., Kremmer, E., et al., Progressive loss of PAX9 expression correlates with increasing malignancy of dysplastic and cancerous epithelium of the human oesophagus, J. Pathol., 2002, vol. 197, pp. 293–297.

    Article  PubMed  CAS  Google Scholar 

  • Heins, N., Malatesta, P., Cecconi, F., et al., Glial cells generate neurons: the role of the transcription factor Pax6, Nat. Neurosci., 2002, vol. 5, pp. 308–315.

    Article  PubMed  CAS  Google Scholar 

  • Horie, M. and Sango, K., Subpial neuronal migration in the medulla oblongata of Pax-6-deficient rats, Eur. J. Neurosci., 2003, vol. 17, pp. 49–57.

    Article  PubMed  Google Scholar 

  • Ito, Y., Tanaka, H., Okamoto, H., and Ohshima, T., Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum, Dev. Biol., 2010, vol. 342, pp. 26–38.

    Article  PubMed  CAS  Google Scholar 

  • Jimeno, D., Velasco, A., Lillo, C., et al., Response of microglial cells after a cryolesion in the peripheral proliferative retina of tench, Brain Res., 1999, vol. 816, pp. 175–189.

    Article  PubMed  CAS  Google Scholar 

  • Kleinjan, D.A., Bancewicz, R.M., Gautier, P., et al., Subfunctionalization of duplicated zebrafish pax6 genes by cis-regulatory divergence, PLoS Genet., 2008, vol. 4, no. 2. e29. doi 10.1371/journal.pgen.004002.

    Google Scholar 

  • Krauss, S., Johansen, T., Korzh, V., and Fjose, A., Expression of the zebrafish paired box gene pax[zf-b] during early neurogenesis, Development, 1991, vol. 113, pp. 1193–1206.

    PubMed  CAS  Google Scholar 

  • Kroehne, V., Freudenreich, D., Hans, S., et al., Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors, Development, 2011, vol. 138, pp. 4831–4841.

    Article  PubMed  CAS  Google Scholar 

  • Lillo, C., Velasco, A., Jimeno, D., et al., The glial design of a teleost optic nerve head supporting continuous growth, J. Histochem. Cytochem., 2002, vol. 50, pp. 1289–1302.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald, R., Scholes, J., Strahle, U., et al., The Pax protein Noi is required for commissural axon pathway formation in the rostral forebrain, Development, 1997, vol. 124, pp. 2397–2408.

    PubMed  CAS  Google Scholar 

  • Mrz, M., Chapouton, P. Diotel, N., et al., Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon, Glia, 2010, vol. 58, pp. 870–888.

    Google Scholar 

  • Matsukawa, T., Arai, K., Koriyama, Y., et al., Axonal regeneration of fish optic nerve after injury, Biol. Pharm. Bull., 2004, vol. 27, pp. 445–451.

    Article  PubMed  CAS  Google Scholar 

  • Merkulov, A.G., Kurs patologogistologicheskoi tekhniki (A Course in Pathohistological Techniques), Leningrad: Meditsina, 1969.

    Google Scholar 

  • Morcillo, J., Martinez-Morales, J.R., Trousse, F., et al., Proper patterning of the optic fissure requires the sequential activity of BMP7 and SHH, Development, 2006, vol. 133, pp. 3179–3190.

    Article  PubMed  CAS  Google Scholar 

  • Northcutt, R.G., Forebrain evolution in bony fishes, Brain Res. Bull., 2008, vol. 75, pp. 191–205.

    Article  PubMed  Google Scholar 

  • Oster, S.F., Deiner, M., Birgbauer, E., and Sretavan, D.W., Ganglion cell axon pathfinding in the retina and optic nerve, Semin. Cell Dev. Biol., 2004, vol. 15, pp. 125–136.

    Article  PubMed  CAS  Google Scholar 

  • Parrilla, M., Lillo, C., Herrero-Turrion, M.J., et al., Pax2 in the optic nerve of the goldfish, a model of continuous growth, Brain Res., 2009, vol. 1255, pp. 75–88.

    Article  PubMed  CAS  Google Scholar 

  • Parrilla, M., Lillo, C., Herrero-Turrion, M.J., et al., Characterization of Pax2 expression in the goldfish optic nerve head during retina regeneration, PLoS One, 2012, vol. 7, no. 2. e32348. doi 10.1371/journal.pone.0032348.

    Google Scholar 

  • Parrilla, M., Lillo, C., Herrero-Turrion, M.J., et al., Pax2+ astrocytes in the fish optic nerve head after optic nerve crush, Brain Res., 2013, vol. 1492, pp. 18–32.

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer, P.L., Gerster, T., Lun, K., et al., Characterization of three novel members of the zebrafish Pax2/5/8 family: dependency of Pax5 and Pax8 expression on the Pax2.1 (noi) function, Development, 1998, vol. 125, pp. 3063–3074.

    PubMed  CAS  Google Scholar 

  • Pushchina, E.V., Obukhov, D.K., and Varaksin, A.A., Neurochemical markers of cells of the periventricular brain area in the masu salmon Oncorhynchus masou (Salmonidae), Russ. J. Dev. Biol., 2012, vol. 43, no. 1, pp. 35–48.

    Article  CAS  Google Scholar 

  • Pushchina, E.V., Shukla, S., Varaksin, A.A., and Obukhov, D.K., Cell proliferation and apoptosis in optic nerve and brain integration centers of adult trout Oncorhynchus mykiss after optic nerve injury, Neural Regen. Res., 2016a, vol. 11, pp. 578–590.

    Google Scholar 

  • Pushchina, E.V., Varaksin, A.A., and Obukhov, D.K., Reparative neurogenesis in the brain and changes in the optic nerve of adult trout Oncorhynchus mykiss after mechanical damage of the eye, Russ. J. Dev. Biol., 2016b, vol. 47, no. 1, pp. 11–32.

    Google Scholar 

  • Rink, E. and Wullimann, M.F., Are dopaminergic diencephalic basal plate neurons induced by pax 6 alar plate cells in the zebrafish?, in 13th Biennial Meeting Intern. Soc. Develop. Neurosci., Heidelberg: Abstract Volume, 2000, p. 67.

    Google Scholar 

  • Seidenfaden, R., Desoeuvre, A., Bosio, A., et al., Glial conversion of SVZ-derived committed neuronal precursors after ectopic grafting into the adult brain, Mol. Cell. Neurosci., 2006, vol. 32, pp. 187–198.

    Article  PubMed  CAS  Google Scholar 

  • Soukkarieh, C., Agius, E., and Soula, C., Pax2 regulates neuronal-glia cell fate choice in the embryonic optic nerve, Dev. Biol., 2007, vol. 303, pp. 800–813.

    Article  PubMed  CAS  Google Scholar 

  • Stanke, J., Moose, H.E., El-Hodiri, H.M., and Fischer, A.J., Comparative study of Pax2 expression in glial cells in the retina and optic nerve of birds and mammals, J. Comp. Neurol., 2010, vol. 518, pp. 2316–2333.

    Article  PubMed  CAS  Google Scholar 

  • Stoykova, A. and Gruss, P., Roles of Pax-genes in developing and adult brain as suggested by expression patterns, J. Neurosci., 1994, vol. 14, pp. 1395–1412.

    Article  PubMed  CAS  Google Scholar 

  • Than-Trong, E. and Bally-Cuif, L., Radial glia and neural progenitors in the adult zebrafish central nervous system, Glia, 2015, vol. 63, pp. 1406–1428.

    Article  PubMed  Google Scholar 

  • Thompson, J.A., Pax genes during neural development and their potential role in neuroregeneration, J. Prog. Neurobiol., 2011, vol. 94, pp. 334–351.

    Article  CAS  Google Scholar 

  • Wullimann, M.F., The central nervous system, in The Physiology of Fishes, Boca Raton: CRS Press, 1998, pp. 245–282.

    Google Scholar 

  • Wullimann, M.F. and Muller, T., Teleostean and mammalian forebrains contrasted: evidence from genes to behavior, J. Comp. Neurol., 2004, vol. 475, pp. 143–162.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Pushchina.

Additional information

Original Russian Text © E.V. Pushchina, A.A. Varaksin, D.K. Obukhov, 2018, published in Ontogenez, 2018, Vol. 49, No. 5, pp. 294–323.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushchina, E.V., Varaksin, A.A. & Obukhov, D.K. The Pax2 and Pax6 Transcription Factors in the Optic Nerve and Brain of Trout Oncorhynchus mykiss after a Mechanical Eye Injury. Russ J Dev Biol 49, 264–290 (2018). https://doi.org/10.1134/S1062360418050041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360418050041

Keywords

Navigation