Skip to main content
Log in

Morphogenetic networks which determine the spatial expression of zygotic genes in early Drosophila embryo

  • Reviews
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

This review deals with the recent studies expanding the idea of positional information in the early embryogenesis of Drosophila melanogaster. Previous studies showed that, in the course of segment determination in Drosophila, information created by gradients of products of maternal coordinate genes is not “read” statically, being interpreted by their zygotic target genes via regulatory interactions. This leads to spatial shifts in the expression of target genes relative to the original positions as well as to dynamic reduction in the zygotic expression variability. However, according to recent data, interpretation of positional information includes the interaction between not only zygotic target genes but also the maternal coordinate genes themselves. Different systems of maternal coordinate genes (maternal systems)—the posterior-anterior, terminal, and dorsoventral—can interact with each other. This is usually expressed in the regulation of zygotic target genes of one maternal system by other maternal systems. The concept of a “morphogenetic network” was introduced to define the interaction of maternal systems during determination of spatial gene expression in the early Drosophila embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affolter, M. and Basler, K., The Decapentaplegic morphogen gradient: from pattern formation to growth regulation, Nat. Rev. Genet., 2007, vol. 8, pp. 663–674.

    Article  CAS  PubMed  Google Scholar 

  • Andrioli, L.P., Oberstein, A.L., Corado, M.S., et al., Groucho- dependent repression by sloppy-paired 1 differentially positions anterior pair-rule stripes in the Drosophila embryo, Dev. Biol., 2004, vol. 276, pp. 541–551.

    Article  CAS  PubMed  Google Scholar 

  • Bellaïche, Y., Bandyopadhyay, R., Desplan, C., et al., Neither the homeodomain nor the activation domain of Bicoid is specifically required for its down-regulation by the Torso receptor tyrosine kinase cascade, Development, 1996, vol. 122, pp. 3499–3508.

    PubMed  Google Scholar 

  • Biemar, F., Zinzen, R., Ronshaugen, M., et al., Spatial regulation of microRNA gene expression in the Drosophila embryo, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, pp. 15907–15911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, H., Xu, Z., Mei, C., et al., A system of repressor gradients spatially organizes the boundaries of Bicoid-dependent target genes, Cell, 2012, vol. 149, pp. 618–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driever, W. and Nusslein-Volhard, C., A gradient of bicoid protein in Drosophila embryos, Cell, 1988a, vol. 54, pp. 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Driever, W. and Nusslein-Volhard, C., The Bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner, Cell, 1988b, vol. 54, pp. 95–104.

    Article  CAS  PubMed  Google Scholar 

  • Fronhofer, H.G. and Nusslein-Volhard, C., Organisation of anterior pattern in the Drosophila embryo by the maternal gene bicoid, Nature, 1986, vol. 324, pp. 120–125.

    Article  Google Scholar 

  • Fu, S., Nien, C., Liang, H., et al., Co-activation of microRNAs by Zelda is essential for early Drosophila development, Development, 2014, vol. 141, pp. 2108–2118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, Q., Wang, Y., and Finkelstein, R., Orthodenticle regulation during embryonic head development in Drosophila, Mech. Dev., 1996, vol. 56, pp. 3–15.

    Article  CAS  PubMed  Google Scholar 

  • Gurdon, J.B., Dyson, S., and St Johnston, D., Cells’ perception of position in a concentration gradient, Cell, 1998, vol. 95, pp. 159–162.

    Article  CAS  PubMed  Google Scholar 

  • Gurdon, J.B. and Bourillot, P.Y., Morphogen gradient interpretation, Nature, 2001, vol. 413, pp. 797–803.

    Article  CAS  PubMed  Google Scholar 

  • Helman, A., Lim, B., Andreu, M.J., et al., RTK signaling modulates the dorsal gradient, Development, 2012, vol. 139, no. 16, pp. 3032–3039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeger, J., Surkova, S., Blagov, M., et al., Dynamic control of positional information in the early Drosophila embryo, Nature, 2004a, vol. 430, pp. 368–371.

    Article  CAS  PubMed  Google Scholar 

  • Jaeger, J., Blagov, M., Kosman, D., et al., Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster, Genetics, 2004b, vol. 167, pp. 1721–1737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeger, J., The gap gene network, Cell Mol. Life Sci., 2011, vol. 68, pp. 243–274.

    Article  CAS  PubMed  Google Scholar 

  • Janody, F., Sturny, R., Catala, F., et al., Phosphorylation of bicoid on MAP-kinase sites: contribution to its interaction with the torso pathway, Development, 2000, vol. 127, no. 2, pp. 279–289.

    CAS  PubMed  Google Scholar 

  • Jimenez, G., Guichet, A., Ephrussi, A., et al., Relief of gene repression by Torso RTK signaling: role of capicua in Drosophila terminal and dorsoventral patterning, Genes Dev., 2000, vol. 14, pp. 224–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klomp, J., Athy, D., Kwan, C.W., et al., A cysteine-clamp gene drives embryo polarity in the midge Chironomus, Science, 2015, vol. 348, no. 6238, pp. 1040–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann, I.R. and Akam, M., The Drosophila posterior group gene nanos functions by repressing hunchback activity, Nature, 1989, vol. 338, pp. 646–648.

    Article  PubMed  Google Scholar 

  • Liang, H., Nien, C., Liu, H., et al., The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila, Nature, 2008, vol. 456, pp. 400–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, F., Morrison, A.H., and Gregor, T., Dynamic interpretation of maternal inputs by the Drosophila segmentation gene network, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 17, pp. 6724–6729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Löhr, U., Chung, H.R., Beller, M., et al., Antagonistic action of Bicoid and the repressor Capicua determines the spatial limits of Drosophila head gene expression domains, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 51, pp. 21695–21700.

    Article  PubMed  PubMed Central  Google Scholar 

  • Löhr, U., Chung, H.R., Beller, M., et al., Bicoid morphogen function revisited, Fly, 2010, vol. 4, no. 3, pp. 236–240.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manu, Surkova, S., Spirov, A.V., et al., Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation, PLoS Biol., 2009, vol. 7, no. 3, p. e1000049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namba, R., Pazdera, T.M., Cerrone, R.L., et al., Drosophila embryonic pattern repair: how embryos respond to bicoid dosage alteration, Development, 1997, vol. 124, pp. 1393–1403.

    CAS  PubMed  Google Scholar 

  • Ochoa-Espinosa, A., Yu, D., Tsirigos, A., et al., Anteriorposterior positional information in the absence of a strong Bicoid gradient, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 10, pp. 3823–3828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisarev, A., Poustelnikova, E., Samsonova, M., et al., FlyEx, the quantitative atlas on segmentation gene expression at cellular resolution, Nucleic Acids Res., 2009, vol. 37, pp. D560–D566.

    Article  CAS  PubMed  Google Scholar 

  • Porcher, A., Abu-Arish, A., Huart, S., et al., The time to measure positional information: maternal Hunchback is required for the synchrony of the Bicoid transcriptional response at the onset of zygotic transcription, Development, 2010, vol. 137, pp. 2795–2804.

    Article  CAS  PubMed  Google Scholar 

  • Reeves, G.T. and Stathopoulos, A., Graded dorsal and differential gene regulation in the Drosophila embryo, Cold Spring Harb Perspect Biol., 2009, vol. 4, p. a000836.

    Google Scholar 

  • Ronchi, E., Treisman, J., Dostatni, N., et al., Downregulation of the Drosophila morphogen Bicoid by the torso receptor-mediated signal transduction cascade, Cell, 1993, vol. 74, pp. 347–355.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, M.I., Lynch, J.A., and Desplan, C., Heads and tails: evolution of antero-posterior patterning in insects, Biochim. Biophys. Acta, 2009, vol. 1789, no. 4, pp. 333–342.

    Article  CAS  PubMed  Google Scholar 

  • Rusch, J. and Levine, M., Regulation of the dorsal morphogen by the Toll and torso signaling pathways: a receptor tyrosine kinase selectively masks transcriptional repression, Genes Dev., 1994, vol. 8, pp. 1247–1257.

    Article  CAS  PubMed  Google Scholar 

  • Schaeffer, V.L., Killian, D., Desplan, C., et al., High bicoid levels render the terminal system dispensable for Drosophila head development, Development, 2000, vol. 127, no. 18, pp. 3993–3999.

    CAS  PubMed  Google Scholar 

  • Small, S., Kraut, R., Hoey, T., et al., Transcriptional regulation of a pair-rule stripe in Drosophila, Genes Dev., 1991, vol. 5, pp. 827–839.

    Article  CAS  PubMed  Google Scholar 

  • Stanojevic, D., Small, S., and Levine, M., Regulation of a segmentation stripe by overlapping activators and repressors in the Drosophila embryo, Science, 1991, vol. 29, no. 254, pp. 1385–1387.

    Article  Google Scholar 

  • Stathopoulos, A. and Levine, M., Dorsal gradient networks in the Drosophila embryo, Dev. Biol., vol. 246, pp. 57–67.

  • Stauber, M.L., Taubert, H., and Schmidt-Ott, U., Function of bicoid and hunchback homologs in the basal cyclorrhaphan fly Megaselia (Phoridae), Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, pp. 10844–10849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surkova, S., Kosman, D., Kozlov, K., et al., Characterization of the Drosophila segment determination morpheme, Dev. Biol., 2008, vol. 313, pp. 844–862.

    Article  CAS  PubMed  Google Scholar 

  • Surkova, S.Yu., Myasnikova, E.M., Reinitz, J., et al., Dynamic filtration of the expression pattern variability of Drosophila zygotic segmentation genes, Biophysics (Moscow), 2008, vol. 53, no. 3, pp. 266–232.

    Google Scholar 

  • Surkova, S.Yu., Gurskiy, V.V., Reinitz, J., et al., Study of stability mechanisms of embryonic development in fruit fly Drosophila, Russ. J. Dev. Biol., 2011, vol. 42, no. 1, pp. 1–15.

    Article  Google Scholar 

  • Tabata, T. and Takei, Y., Morphogens, their identification and regulation, Development, 2004, vol. 131, pp. 703–712.

    Article  CAS  PubMed  Google Scholar 

  • Treisman, J., Gönczy, P., Vashishtha, M., et al., A single amino acid can determine the DNA binding specificity of homeodomain proteins, Cell, 1989, vol. 59, no. 3, pp. 553–562.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, C. and Gergen, J.P., Gap gene properties of the pairrule gene runt during Drosophila segmentation, Development, 1994, vol. 120, pp. 1671–1683.

    CAS  PubMed  Google Scholar 

  • Weigel, D., Jürgens, G., Klingler, M., et al., Two gap genes mediate maternal terminal pattern information in Drosophila, Science, 1990, vol. 248, pp. 495–498.

    Article  CAS  PubMed  Google Scholar 

  • Weisbrod, A., Cohen, M., and Chipman, A.D., Evolution of the insect terminal patterning system-insights from the milkweed bug, Oncopeltus fasciatus, Dev. Biol., 2013, vol. 380, pp. 125–131.

    Article  CAS  PubMed  Google Scholar 

  • Wimmer, E.A., Simpson-Brose, M., Cohen, S.M., et al., Trans- and cis-acting requirements for blastodermal expression of the head gap gene buttonhead, Mech. Dev., 1995, vol. 53, pp. 235–245.

    Article  CAS  PubMed  Google Scholar 

  • Wolpert, L., Positional information and the spatial pattern of cellular differentiation, J. Theor. Biol., 1969, vol. 25, pp. 1–47.

    Article  CAS  PubMed  Google Scholar 

  • Wotton, K.R., Jiménez-Guri, E., Crombach, A., et al., Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita, Elife, 2015a, vol. 4, p. e04785.

    Article  PubMed Central  Google Scholar 

  • Wotton, K.R., Jiménez-Guri, E., and Jaeger, J., Maternal co-ordinate gene regulation and axis polarity in the scuttle fly Megaselia abdita, PLoS Genetics, 2015b, vol. 11, p. e1005042.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, D. and Small, S., Precise registration of gene expression boundaries by a repressive morphogen in Drosophila, Curr. Biol., 2008, vol. 18, pp. 868–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Surkova.

Additional information

Original Russian Text © S.Yu. Surkova, E.V. Golubkova, L.A. Mamon, M.G. Samsonova, 2016, published in Ontogenez, 2016, Vol. 47, No. 4, pp. 219–228.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surkova, S.Y., Golubkova, E.V., Mamon, L.A. et al. Morphogenetic networks which determine the spatial expression of zygotic genes in early Drosophila embryo. Russ J Dev Biol 47, 181–189 (2016). https://doi.org/10.1134/S1062360416040093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360416040093

Keywords

Navigation