Skip to main content
Log in

The Effect of a Lipid Extract from the Marine Green Algae Codium fragile (Suringar) Hariot 1889 on Metabolic Reactions under Acute Stress

  • BIOCHEMISTRY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The effect of a lipid extract isolated from the marine green algae Codium fragile (Suringar) Hariot on the liver and blood biochemical indicators in mice under the impact of acute stress (vertical fixation by the dorsal neck fold) was studied. The pharmacological effect of the C. fragile lipid extract was manifested in the restoration of lipid and carbohydrate metabolism, as well as in the normalization of the indicators of the endogenous antioxidant defense system under the effect of stress. The biological activity of the lipid extract of C. fragile is, probably, due to the action of its constituent polyunsaturated fatty acids of the ω-3 and ω-6 families. The lipid extract of C. fragile was not inferior to the reference Omega-3 preparation in restoring the body’s metabolic reactions caused by the impact of the stress; however, it showed higher antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ahn, J., Kim, M.J., Yoo, A., Ahn, J., Ha, T., Jung, C.H., Seo, H.D., and Jang, Y.J., Identifying codium fragile extract components and their effects on muscle weight and exercise endurance, Food Chem., 2021, vol. 353, p. 129463. https://doi.org/10.1016/j.foodchem.2021.129463

    Article  CAS  PubMed  Google Scholar 

  2. Amenta, J.S., A rapid chemical method for quantification of lipids separated by thin-layer chromatography, J. Lipid Res., 1964, vol. 5, pp. 270–272. https://doi.org/10.1016/S0022-2275(20)40251-2

    Article  CAS  PubMed  Google Scholar 

  3. Bligh, E.G. and Dyer, W.J., A rapid method of total lipid extraction and purification, Can. J. Biochem. Phys., 1959, vol. 37, no. 8, pp. 911–917. https://doi.org/10.1139/o59-099

    Article  CAS  Google Scholar 

  4. Burk, R.F., Lawrence, R.A., and Lane, J.M., Liver necrosis and lipid peroxidation in the rat as the result of paraquat and diquat administration. effect of selenium deficiency, J. Clin. Invest., 1980, vol. 65, no. 5, pp. 1024–1031. https://doi.org/10.1172/JCI109754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carreau, J.P. and Dubacq, J.P., Adaptation of a macro-scale method to the micro-scale for fatty acid methyl transesterification of biological lipid extracts, J. Chromatogr., 1978, vol. 151, no. 3, pp. 384–390. https://doi.org/10.1016/S0021-9673(00)88356-9

    Article  CAS  Google Scholar 

  6. Chapman, V.J. and Chapman, D.J., Seaweeds and Their Uses, New York, NY, USA: Chapman and Hall, 1980, 3rd ed. https://doi.org/10.1007/978-94-009-5806-7

  7. Christie, W.W., Equivalent chain-lengths of methyl ester derivatives of fatty acids on gas chromatography: a reappraisal, J. Chromatogr., 1988, vol. 447, pp. 305–314. https://doi.org/10.1016/0021-9673(88)90040-4

    Article  CAS  Google Scholar 

  8. Chrousos, G.P., Stress and disorders of the stress system, Nat. Rev. Endocrinol., 2009, no. 5, pp. 374–381. https://doi.org/10.1038/nrendo.2009.106

  9. European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes (ETS No. 123), Strasbourg, 1986. http://conventions.coe.int.

  10. Folch, J., Less, M., and Sloane-Stanley, G.H., A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem., 1957, vol. 226, no. 1, pp. 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5

    Article  CAS  PubMed  Google Scholar 

  11. Fomenko, S.E., Kushnerova, N.F., Sprygin, V.G., and Momot, T.V., Disturbance of metabolic processes in the liver of rats under the influence of stress, Tikhookean. Med. Zh., 2013, no. 2, pp. 67–70.

  12. Fomenko, S.E., Kushnerova, N.F., Sprygin, V.G., and Momot, T.V., The antioxidant and stress-protective properties of an extract from the green alga Ulva lactuca Linnaeus, 1753, Russ. J. Mar. Biol., 2016, vol. 42, no. 6, pp. 509–514. https://doi.org/10.1134/S1063074016060031

    Article  Google Scholar 

  13. Van Gent, C.M., Roseleur, O.J., and Van Der Bijl, P., The detection of cerebrosides on thin-layer chromatograms with an anthrone spray reagent, J. Chromatogr., 1973, vol. 85, no. 1, pp. 174–176. https://doi.org/10.1016/S0021-9673(01)91884-9

    Article  CAS  Google Scholar 

  14. Goecke, F., Hernandez, V., Bittner, M., Gonzalez, M., Becerra, J., and Silva, M., Fatty acid composition of three species of Codium (Bryopsidales, Chlorophyta) in Chile, Rev. Biol. Mar. Oceanogr., 2010, vol. 45, no. 2, pp. 325–330. https://doi.org/10.4067/S0718-19572010000200014

    Article  Google Scholar 

  15. Gurskaya, A.I., Otvalko, E.A., Yatskovskaya, N.M., and Chirkin, A.A., Biochemical criteria of acute and chronic stress during immobilization of rats, Vestn. VDU, 2017, vol. 98, no. 1, pp. 61–65.

    Google Scholar 

  16. Harris, W.S., Miller, M., Tighe, A.P., Davidson, M.H., and Schaefer, E.J., Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives, Atherosclerosis, 2008, vol. 197, pp. 12–24. https://doi.org/10.1016/j.atherosclerosis.2007.11.008

    Article  CAS  PubMed  Google Scholar 

  17. Hulbert, A.I., Turner, N., Storlien, L.H., and Else, P.L., Dietary fats and membrane function: implications for metabolism and disease, Biol. Rev. Camb. Philos. Soc., 2005, vol. 80, no. 1, pp. 155–169. https://doi.org/10.1017/s1464793104006578

    Article  CAS  PubMed  Google Scholar 

  18. Jump, D.B., Depner, C.M., Tripathy, S., and Lytle, K.A., Potential for dietary omega-3 fatty acids to prevent nonalcoholic fatty liver disease and reduce the risk of primary liver cancer, Adv. Nutr., 2015, vol. 6, no. 6, pp. 694–702. https://doi.org/10.3945/an.115.009423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karpishchenko, A.I., Alipov, A.N., and Alekseev, V.V., Meditsinskie laboratornye tekhnologii. Rukovodstvo po klinicheskoi laboratornoi diagnostike (Medical Laboratory Technologies. Manual of Clinical Laboratory Diagnostics), GEOTAR-Media, 2013, vol. 2.

  20. Khan, S.A. and Makki, A., Dietary changes with omega-3 fatty acids improves the blood lipid profile of Wistar albino rats with hypercholesterolaemia, Int. J. Med. Res. Health Sci., 2017, vol. 6, no. 3, pp. 34–40.

    Google Scholar 

  21. Khotimchenko, S.V., Lipidy morskikh vodoroslei-makrofitov i trav. Struktura, raspredelenie, analiz (Lipids from Macrophyte Seaweeds and Herbs: Structure, Distribution, and Analysis), Vladivostok: Dal’nauka, 2003.

  22. Khotimchenko, S., Vaskovsky, V., and Titlyanova, T., Fatty acids of marine algae from the pacific coast of North California, Bot. Mar., 2002, vol. 45, pp. 17–22. https://doi.org/10.1515/BOT.2002.003

    Article  CAS  Google Scholar 

  23. Kim, J., Choi, J.H., Oh, T., Ahn, B., and Unno, T., Codium fragile ameliorates high-fat diet-induced metabolism by modulating the gut microbiota in mice, Nutrient, 2020, vol. 12, p. 1848. https://doi.org/10.3390/nu12061848

    Article  CAS  Google Scholar 

  24. Komal, F., Khan, M.K., Imran, M., Ahmad, M.H., Anwar, H., Ashfaq, U.A., Ahmad, N., Masroor, A., Ahmad, R.S., Nadeem, M., and Nisa, M.U., Impact of different omega-3 fatty acid sources on lipid, hormonal, blood glucose, weight gain and histopathological damages profile in PCOS rat model, J. Transl. Med., 2020, vol. 18, pp. 349–360. https://doi.org/10.1186/s12967-020-02519-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kushnerova, N.F., Sprygin, V.G., Fomenko, S.E., and Rakhmanin, Yu.A., The influence of stress on the state of lipid and carbohydrate metabolism of the liver, prevention, Gig. Sanit., 2005, no. 5, pp. 17–21.

  26. Kushnerova, N.F., Fomenko, S.E., Sprygin, V.G., and Momot, T.V., The effects of the lipid complex of extract from the marine red alga Ahnfeltia tobuchiensis (Kanno et Matsubara) Makienko on the biochemical parameters of blood plasma and erythrocyte membranes during experimental stress exposure, Russ. J. Mar. Biol., 2020, vol. 46, no. 4, pp. 277–283. https://doi.org/10.1134/S1063074020040057

    Article  CAS  Google Scholar 

  27. Lee, C., Park, G.H., Ahn, E.M., Kim, B.A., Park, C.I., and Jang, J.H., Protective effect of Codium fragile against UVB-induced pro-inflammatory and oxidative damages in HaC-aT cells and BALB/c mice, Fitoterapia, 2013, vol. 86, pp. 54–63. https://doi.org/10.1016/j.fitote.2013.01.020

    Article  CAS  PubMed  Google Scholar 

  28. Nieto, N., Fernandez, M.I., Torres, M.I., Ríos, A., and Suarez, M.D., Dietary monounsaturated n-3 and n-6 long-chain polyunsaturated fatty acids affect cellular antioxidant defense system in rats with experimental ulcerative colitis induced by trinitrobenzene sulfonic acid, Gil. Dig. Dis. Sci., 1998, vol. 43, no. 12, pp. 2678–2687. https://doi.org/10.1023/a:1026655311878

    Google Scholar 

  29. Novgorodtseva, T.P., Karaman, Yu.K., Bival’kevich, N.V., and Zhukova, N.V., The use of a biologically active food supplement based on lipids from marine hydrobionts in an experiment on rats, Vopr. Pitan., 2010, vol. 79, no. 2, pp. 24–27.

    CAS  PubMed  Google Scholar 

  30. Ortiz, J., Uquiche, E., Robert, P., Romero, N., Quitral, V., and Llantén, C., Functional and nutritional value of the Chilean seaweeds Codium fragile, Gracilaria chilensis and Macrocystis pyrifera, Eur. J. Lipid Sci. Technol., 2009, vol. 111, no. 4, pp. 320–327. https://doi.org/10.1002/ejlt.200800140

    Article  CAS  Google Scholar 

  31. Patten, A.R., Brocardo, P.S., and Christie, B.R., Omega-3 supplementation can restore glutathione levels and prevent oxidative damage caused by prenatal ethanol exposure, J. Nutr. Biochem., 2013, vol. 24, no. 5, pp. 760–769. https://doi.org/10.1016/j.jnutbio.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  32. Pereira, A.G., Fraga-Corral, M., Garcia-Oliveira, P., Lourenco Lopes, C., Carpena, M., Prieto, M.A., and Simal-Gandara, J., The use of invasive algae species as a source of secondary metabolites and biological activities: Spain as case-study, Mar. Drugs, 2021, vol. 19, pp. 178–198. https://doi.org/10.3390/md19040178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ravussin, E., Adiponectin enhances insulin action by decreasing ectopic fat deposition, J. Pharmacogenomics, 2002, vol. 2, no. 1, pp. 4–7. https://doi.org/10.1038/sj.tpj.6500068

    Article  CAS  Google Scholar 

  34. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C., Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biol. Med., 1999, vol. 26, nos. 9–10, pp. 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3

    Article  CAS  Google Scholar 

  35. Refaat, B., Abdelghany, A.H., Ahmad, J., Abdalla, O.M., Elshopakey, G.E., Idris, S., and El-Boshy, M., Vitamin D(3) enhances the effects of omega-3 oils against metabolic dysfunction-associated fatty liver disease in rat, Biofactors, 2022, vol. 48, no. 2, pp. 498–513. https://doi.org/10.1002/biof.1804

    Article  CAS  PubMed  Google Scholar 

  36. Richard, D., Kefi, K., Barbe, U., Bausero, P., and Visioli, F., Polyunsaturated fatty acids as antioxidants, Pharmacol. Res., 2008, vol. 57, no. 6, pp. 451–455. https://doi.org/10.1016/j.phrs.2008.05.002

    Article  CAS  PubMed  Google Scholar 

  37. Sahin, E. and Gumuëslu, S., Stress-dependent induction of protein oxidation, lipid peroxidation and anti-oxidants in peripheral tissues of rats: comparison of three stress models (immobilization, cold and immobilization-cold), Clin. Exp. Pharmacol. Physiol., 2007, vol. 34, nos. 5–6, pp. 425–431. https://doi.org/10.1111/j.1440-1681.2007.04584.x

    Article  CAS  PubMed  Google Scholar 

  38. Sanchez-Machado, D., Lopez-Cervantes, J., Lopez-Hernandez, J., and Paseiro-Losada, P., Fatty acids, total lipid, protein and ash contents of processed edible seaweeds, Food Chem., 2004, vol. 85, pp. 439–444. https://doi.org/10.1016/j.foodchem.2003.08.001

    Article  CAS  Google Scholar 

  39. Seo, H.-D., Lee, E., Ahn, J., Hahm, J.-H., Ha, T.-Y., Lee, D.-H., and Jung, C.H., Codium fragile reduces adipose tissue expansion and fatty liver incidence by downregulating adipo- and lipogenesis, J. Food Biochem., 2022, vol. 46, no. 12, p. e14395. https://doi.org/10.1111/jfbc.14395

    Article  CAS  PubMed  Google Scholar 

  40. Solin, A.V., Korozin, V.I., and Lyashev, Yu.D., The influence of regulatory peptides on stress-induced changes in lipid metabolism in experimental animals, Byull. Eksp. Biol. Med., 2013, vol. 155, no. 3, pp. 299–301.

    Article  Google Scholar 

  41. Svetachev, V.I. and Vaskovsky, V., A simplified technique for thin-layer microchromatography of lipids, J. Chromatogr., 1972, vol. 6, pp. 376–378. https://doi.org/10.1016/s0021-9673(01)91245-2

    Article  Google Scholar 

  42. Titlyanov, E.A. and Titlyanova, T.V., Morskie rasteniya stran Aziatsko-Tikhookeanskogo regiona, ikh ispol’zovanie i kul’tivirovanie (Marine Plants of the Countries of the Asia-Pacific Region, Their Use and Cultivation), Vladivostok: Dal’nauka, 2012.

  43. Vascovsky, V.E., Kostetsky, E.Y., and Vasendin, I.M., Universal reagent for phospholipid analysis, J. Chromatogr., 1975, vol. 114, pp. 129–141. https://doi.org/10.1016/s0021-9673(00)85249-8

    Article  Google Scholar 

  44. Vaskovsky, V.E. and Khotimchenko, S.V., HPTLC of polar lipids of algae and other plants, J. Chromatogr., 1982, vol. 5, pp. 635–636. https://doi.org/10.1002/jhrc.1240051113

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the framework of a State Assignment of the Ilyichev Pacific Oceanological Institute (Far Eastern Branch of the Russian Academy of Sciences) on the topic “Ecological and Biogeochemical Processes in Marine Ecosystems: The Role of Natural and Anthropogenic Factors,” project no. 0211-2021-0014, registration no. 121-21500052-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Fomenko.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The experiments with animals were conducted in compliance with the NIH Guidelines for the care and use of laboratory animals (http://oacu.od.nih.gov/regs/index.htm). Experimental protocols were approved by the Ethics Committee of Ilyichev Pacific Oceanological Institute (Protocol No. 21 of November 10, 2022).

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomenko, S.E., Kushnerova, N.F., Sprygin, V.G. et al. The Effect of a Lipid Extract from the Marine Green Algae Codium fragile (Suringar) Hariot 1889 on Metabolic Reactions under Acute Stress. Biol Bull Russ Acad Sci 51, 260–270 (2024). https://doi.org/10.1134/S1062359023602690

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023602690

Keywords:

Navigation