Skip to main content
Log in

Physicochemical Characterization and Microbial Diversity of Calcareous Water in Huanglong Ravine, China—A World’s Heritage Site

  • ECOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Huanglong ravine (a world heritage site) is famous for its calcareous sinter landscape. Influenced by geomorphology, climate, hydrodynamic conditions, and biology, the overflow of CO2 in the water causes CaCO3 to over-saturate, allowing for the deposition of calcareous sinter. Among them, microorganisms play an important role in the formation of calcareous sinter. In order to investigate the physicochemical characteristics and microbial diversity of Huanglong ravine water, we measured the water quality and analyzed the microbial diversity in Huanglong ravine water samples by high-throughput sequencing method. The results showed that the TP (total phosphorus) and TN (total nitrogen) in Huanglong ravine water were 0.2–0.3 and 0.46–2.09 mg/L, respectively. Most of the sampling sites were moderately eutrophication. The abundance of Acinetobacter (9.55–67.13%), Pseudomonas (5.67–45.94%) and Brevundimonas (2.26–8.89%) was higher. The microbial community of Huanglong ravine water showed some positive correlation with the TP and TN. This study helps to diagnose the causes of algal blooms in Huanglong ravine and provides a scientific basis for the conservation of Huanglong ravine calcareous landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Alekseeva, S.A., Bakunina, I.Y., Nedashkovskaya, O.I., Isakov, V.V., Mikhailov, V.V., and Zvyagintseva, T.N., Intracellular alginolytic enzymes of the marine bacterium Pseudoalteromonas citrea KMM 3297, Biochemistry (Moscow, 2004, vol. 69, pp. 262–269.

    Book  Google Scholar 

  2. Arenas, C., Auque, L., Osacar, C., Sancho, C., Lozano, M.V., Vazquez-Urbez, M., and Pardo, G., Current tufa sedimentation in a high discharge river: a comparison with other synchronous tufa records in the Iberian Range (Spain), Sediment Geol., 2015, vol. 325, pp. 132–157.

    Article  CAS  Google Scholar 

  3. Bengrane, K. and Marhaba, T.F., Using principal component analysis to monitor spatial and temporal changes in water quality, J. Hazard Mater., 2003, vol. 100, pp. 179–195.

    Article  Google Scholar 

  4. Chafetz, H.S. and Folk, R.L., Travertines: depositional morphology and the bacterially constructed constituents (carbonate precipitation, Italy, USA), J. Sediment Res., 1984, vol. 54, pp. 289–316.

    CAS  Google Scholar 

  5. Chang, H.Q., Yang, X.E., and Min, P.P., A review of microbial phosphorus removal, J. Agro–Environ. Sci., 2005.

  6. Chao, A., Nonparametric estimation of the number of classes in a population, Scand. J. Statist., 1984, vol. 11.

  7. Chao, C., The effect of bioorganic matter on travertine sedimentation and degradation in Huanglong scenic area, Master’s Thesis, Southwest University of Science and Technology, 2018.

  8. Dong, F., Zheng, F., Dai, Q., Li, Q., Chen, Y., Liu, X., Jiang, Z., Zhang, Q., Li, B., BaBa A., and Plenkovic-Moraj, A., Preliminary study on nanometer growth process and regulatory mechanism of travertine nonclassical deposition—a case study of travertine in Jiuzhaigou valley and Huanglong region, Carsol. Sin., 2021a, vol. 40, pp. 55–67.

    CAS  Google Scholar 

  9. Dong, F., Li, G., Dai, Q., Zhou, L., Wang, F., Zhao, X., Jiang, Z., Zhang, Q., Li, B., Enrico, C., Mike, O., and Andelka, P.M., Biological effects on travertine forming in Xuebaoding drainage basin region, Carsol. Sin., 2021b, vol. 40, pp. 11–18.

    CAS  Google Scholar 

  10. Dong, F., Dai, Q., Rao, H., Wang, F., Zhao, X., Jiang, Z., Zhang, Q., Li, B., Malov, A.I., Capezzuoli, E., and Auler, A., Comparative study on microbial deposition of travertine in Huanglong scenic area and Yellowstone National Park, Carsol. Sin., 2021c, vol. 40, pp. 264–272.

    CAS  Google Scholar 

  11. Fouke, B.W., Bonheyo, G.T., Sanzenbacher, B., and Frias-Lopez, J., Partitioning of bacterial communities between travertine depositional facies at Mammoth Hot Springs, Yellowstone National Park, U.S.A., Can. J. Earth Sci., 2003, vol. 40, pp. 1531–1548.

    Article  Google Scholar 

  12. Grattan, L.M. and Trainer, V.L., Special issue: harmful algal blooms and public health preface, Harmful Algae, 2016, vol. 57, p. 1.

    Article  PubMed  Google Scholar 

  13. Greenfield, L.J., Metabolism and concentration of calcium and magnesium and precipitation of calcium carbonate by a marine bacterium, Ann. N.Y. Acad. Sci., 1963, vol. 109, pp. 23–45.

    Article  CAS  Google Scholar 

  14. Huang, H., Song, T., Yan, X., An, D., Min, S., Dang, Z., and Dai, Q., Study on the spatial variation characteristics of hydrochemistry in the surface water system of Huanglong Ravine, Sichuan Province, Ind. Miner. Proc., 2020, vol. 49, pp. 43–47.

    Google Scholar 

  15. Jones, J.I., Eaton, J.W., and Hardwick, K., The effect of changing environmental variables in the surrounding water on the physiology of Elodea nuttallii, Aquat. Bot., 2000, vol. 66, pp. 115–129.

    Article  Google Scholar 

  16. Kawai, T., Kano, A., and Hori, M., Geochemical and hydrological controls on biannual lamination of tufa deposits, Sediment. Geol., 2009, vol. 213, pp. 41–50.

    Article  Google Scholar 

  17. Legendre, M.P., Nonlinear redundancy analysis and canonical correspondence analysis based on polynomial regression, Ecology, 2002, vol. 83, pp. 1146–1161.

    Article  Google Scholar 

  18. Li, Y., Effects of algae in tufa landscape in Huanglong scenic area, J. Anhui Agric. Sci., 2011, vol. 39, pp. 5433–5435.

    Google Scholar 

  19. Li, B., Study on Bacillariophyta of karst landform in Munigou, Sichuan, Master’s Thesis, Shanghai Normal University, 2013.

  20. Li, G., Research on composite deposition of Huanglong typical diatom and travertine in plateau cold water environment, Master’s Thesis, Southwest University of Science and Technology, 2018.

  21. Li, X., Geng, Y., Li, Y., and Hu, H., The advantages in competition based on the photosynthetic characteristics of Microcystis aeruginosa, J. Wuhan Bot. Res., 2006, vol. 24, pp. 225–230.

    Google Scholar 

  22. Li, Y., Tian, Y., and Li, Y., Tufa algae and biological karstification at Huanglong, Sichuan, Carsol. Sin., 2011, vol. 30, pp. 86–92.

    Google Scholar 

  23. Liu, Z., Yuan, D., He, S., Chao, J., You, S., Dreybrodt, W., Svensson, U., Yoshimura, K., and Drysdale, R., A study on the origin and formation mechanism of calcarea in the Huanglonggou Scenic Area, Sichuan, Geochimica, 2003, vol. 32, pp. 1–1023.

    Google Scholar 

  24. Liu, Z., Tian, Y., An, D., Wang, H., Tang, S., Zhang, J., Sun, H., Liu, Y., and Zhang, Q., Formation and evolution of the travertine landscape at Huanglong, Sichuan, one of the world natural heritages, Acta Geosci. Sin., 2009, vol. 30, pp. 841–847.

    CAS  Google Scholar 

  25. Liu, X., Sun, D., Chao, N., Yuan, N., Huang, H., Tian, C., Zhang, Q., Tang, S., Li, D., and Zhou, D., Study on the structure of multi-layer water circulation system in the core scenic spot of Huanglong, Carsol. Sin., 2021, vol. 40, p. 15.

    Google Scholar 

  26. Louati, I., Pascault, N., Debroas, D., Bernard, C., Humbert, J.F., and Leloup, J., Structural diversity of bacterial communities associated with bloom-forming freshwater cyanobacteria differs according to the cyanobacterial genus, PLoS One, 2015, vol. 10.

  27. Luo, K., Chen, L., Du, L., Zhao, Y., and Chen, Q., Response of the aerobic denitrifying phosphorus accumulating bacteria Pseudomonas psychrophila HA-2 to low temperature and zinc oxide nanoparticles stress, Bioresour. Technol., 2022, vol. 354, p. 127162.

    Article  CAS  PubMed  Google Scholar 

  28. Madigan, M.T., Martinko, J.M., and Brock, P.J., Biology of Microorganisms, Upper Saddle River, NJ: Pearson Prentice Hall, 2006.

    Google Scholar 

  29. Mao, S., Dai, Q., Guo, J., Li, X., Li, J., and Huang, Y., Isolation, identification and immobilization of a high-efficiency phosphorus accumulating bacteria, Technol. Water Treat., 2021, vol. 47, pp. 59–63.

    CAS  Google Scholar 

  30. Min, S., Dai, Q., Cui, J., Li, Q., Dang, Z., Luo, R., and Dong, F., Study on degradation characteristics and restoration and conservation materials of travertine marble dam, Huanglong, Carsol. Sin., 2021, vol. 40, pp. 99–104.

    Google Scholar 

  31. Pang, P., Determination of total phosphorus in soil by ammonium molybdate spectrophotometry, Chin. J. Spectrosc. Lab., 2003.

  32. Pentecost, A. and Terry, C., Inability to demonstrate calcite precipitation by bacterial isolates from travertine, Geomicrobiol. J., 1988, vol. 6, pp. 185–194.

    Article  CAS  Google Scholar 

  33. Shan, W.U., Wang, C., Hongxin, L.I., and Liu, J., Correlativity of conductivity and TDS, Tianjin Sci. Technol., 2017.

    Google Scholar 

  34. Shannon, C.E., A mathematical theory of communication, Bell Syst. Techn. J., 1948, vol. 27, pp. 379–423.

    Article  Google Scholar 

  35. Sun, S., Dong, F., Hermann, E., Zhao, X., Liu, M., Dai, Q., Li, Q., An, D., and Dong, H., Metabolic influence of psychrophilic diatoms on travertines at the Huanglong natural scenic district of China, Int. J. Environ. Res. Public Health, 2014, vol. 11, no. 12, pp. 13084–13096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sun, S., Wang, F., and Zhao, X., Mineralogical characteristics and its significance of travertine deposition profile in Huanglong, Sichuan, Adv. Geosci., 2016, vol. 6, p. 8.

    Google Scholar 

  37. Thomas, F., Le Duff, N., Wu, T.D., Cbron, A., Uroz, S., Riera, P., Leroux, C., Tanguy, G., Legeay, E., and Guerquin-Kern, J.L., Isotopic tracing reveals single-cell assimilation of a macroalgal polysaccharide by a few marine Flavobacteria and Gammaproteobacteria, ISME J., 2021, vol. 15, pp. 3062–3075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsuneda, S., Ohno, T., Soejima, K., and Hirata, A., Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor, Biochem. Eng. J., 2006, vol. 27, pp. 191–196.

    Article  CAS  Google Scholar 

  39. Vollenweider, R.A., Scientific Fundamentals of the Eutrophication of Lakes and Flowing Water, with Particular Reference to Nitrogen and Phosphorus as Factors in Eutrophication, Organisation for Economic Co-operation and Development, 1971.

    Google Scholar 

  40. Wang, L., Li, J., and Kang, W.L., Bioremediation of eutrophicated water by Acinetobacter calcoaceticus, Bull. Environ. Contam. Toxicol., 2007, vol. 78, pp. 527–530.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, Y.B., Bi-Juan, H.E., Zheng, Z., and Miao, J.L., Preliminary study on identification of algicidal active substance from mangrove bacteria Flavobacterium sp. and its algicidal effect on red tide algae Alexandrium tamarense, Chin. J. Mar. Drugs, 2008.

  42. Wang, H., Liu, Z., Zeng, C., Liu, X., Sun, H., Aa, D., Tang, S., and Zhang, Q., Hydrochemical variations of Huanglong Spring and the stream in Huanglong Ravine, Sichuan Province, Geochimica, 2009, vol. 38, pp. 307–314.

    Google Scholar 

  43. Wang, P., Lu, S., Wang, D., Xu, M., Gan, S., and Jin, X., Nitrogen, phosphorous and organic matter spatial distribution characteristics and their pollution status evaluation of sediments nutrients in lakeside zones of Taihu Lake, China Environ. Sci., 2012, vol. 32, pp. 703–709.

    CAS  Google Scholar 

  44. Wang, Z., Yin, J., Pu, J., and Yuan, D., Biological processes responsible for travertine deposition: a review and future prospect, Adv. Earth Sci., 2019, vol. 34, pp. 606–617.

    CAS  Google Scholar 

  45. Wen, S., Zhao, D., Zhang, F., Ma, X., and Yang, F., Risk assessment method of harmful algal bloom hazard, J. Nat. Disasters, 2009, vol. 18, pp. 106–111.

    Google Scholar 

  46. Xiao, Y., Study of the water bacterial diversity from Huanglong, Master’s Thesis, Sichuan Agricultural University, 2013.

  47. Yang, X.E., Xiang, W., Hao, H.L., and He, Z.L., Mechanisms and assessment of water eutrophication, J. Zhejiang Univ. Sci. B, 2008, vol. 9, no. 3, pp. 197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, H., Zhang, G., Wen, X., Geng, Y., and Li, Y., Effects of pH on the photosynthesis, growth and lipid production of Chlorella sp. XQ-200419, Acta Hydrobiol. Sin., 2014, vol. 38, pp. 1084–1091.

    CAS  Google Scholar 

  49. Zhang, J., and Bao, X., Study on aquatic algae growth impact factors at Huanglong scenic spot, World Sci.–Tech. R&D, 2015, vol. 37, pp. 519–521.

  50. Zhao, P., The ecological respond of microorganisms to environment in different nitrogen polluted water, Master’s Thesis, Huazhong Agricultural University, 2016.

  51. Zheng, J.P., Discussion on the improvement of determination of total-nitrogen in water by potassium persulfate oxidation–UV spectrophotometry, Chin. J. Spectrosc. Lab., 2011.

  52. Zhou, S., Gao, H., Deng, C., Hu, X., and Zhang, J., Distributive features of the mineral elements of the wild Russula in the nature reserve of Fanjing Mountain and its correlation analysis of the rhizosphere soil, J. Saf. Environ., 2021, vol. 21, pp. 2319–2328.

    Google Scholar 

  53. Zuo, N., Wang, T., and Ji, F., Removal effect of phosphorus and population structure of phosphorus accumulating organisms in HA–A/A–MCO sludge reduction process, China Water Wastewater, 2012, vol. 28, pp. 17–21.

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by Natural restoration and conservation demonstration study of travertine landscape in Huanglong National Geological Park (Phase I), no. 513220202100331; Huanglong National Scenic Spot Administration (nos. 513220202100254, 513220202100331); Aba Prefecture Science and Technology Bureau (no. R21YYJSYJ0010); Sichuan Institute of Geological Survey (nos. SDDY-Z2022008, 51000023Y000008288317); Chengdu University of Technology Research Startup Fund (10912-KYQD2021-01944; 10912-KYQD2020-08431).

Author information

Authors and Affiliations

Authors

Contributions

Xinze Liu and Jing Zhang contributed equally to this work. Conceptualization, Wenhao Gao; Data curation, Jing Zhang; Formal analysis, Bingyao Qin; Funding acquisition, Qi Li and Weizhen Zhang; Investigation, Changbao Tian and Xuefei Zhao; Resources, Ningfei Lei; Writing— original draft, Xinze Liu and Jing Zhang; Writing—review and editing, Qihui Li, Qi Li and Weizhen Zhang.

Corresponding authors

Correspondence to Qi Li or Weizhen Zhang.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xinze Liu, Zhang, J., Gao, W. et al. Physicochemical Characterization and Microbial Diversity of Calcareous Water in Huanglong Ravine, China—A World’s Heritage Site. Biol Bull Russ Acad Sci 50, 696–706 (2023). https://doi.org/10.1134/S1062359023600605

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023600605

Keywords:

Navigation