Skip to main content
Log in

Specific and Genetic Structure of the Daphnia longispina s. l. Complex (Cladocera, Daphniidae) in Water Bodies of Southern Siberia

  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Data on the species diversity, morphological variability, genetic structure, phylogeny, and phylogeography of the D. longispina s. l. group from water bodies of southern Siberia are summarized. The integrated approach involves traditional morphological studies, an analysis of body shape variability using geometric morphometrics, and study of the genetic variability based on mitochondrial (12S, 16S, ND2) and nuclear (ITS2) markers. This approach allows us to identify several forms/species within the genus Daphnia that are new and endemic to the fauna of Russia, to describe some distinctive features of their morphology, to reconstruct phylogenetic relationships within the D. longispina s. l. group, and to elucidate the distribution ranges of species, both common and rare. The study of the variability of mitochondrial DNA genes provided the opportunity to propose and substantiate the hypothesis that various forms/species of this cladoceran group could have passed through different evolutionary scenarios across the territory of northern Eurasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Adamowicz, S.J., Petrusek, A., Colbourne, J.K., Hebert, P.D.N., and Witt, J.D.S., The scale of divergence: a phylogenetic appraisal of intercontinental allopatric speciation in a passively dispersed freshwater zooplankton genus, Mol. Phylogenet. Evol., 2009, vol. 50, pp. 423–436.

    PubMed  Google Scholar 

  2. Arzhannikov, S.G., Alekseev, S.V., Glyzin, A.V., Razmakhnina, T.B., and Orlova, L.A., Natural situation in the Holocene in the western part of the Todzha depression as exemplified by the Merzlyi Yar section, in Problemy rekonstruktsii klimata i prirodnoi sredy Golotsena i Pleistotsena Sibiri (Problems of Reconstruction of the Climate and Natural Environment of the Holocene and Pleistocene of Siberia), Novosibirsk: Izd. Inst. Arkheol. Etnogr. Sib. Otd. Ross. Akad. Nauk, 2000, no. 2, pp. 18–29.

  3. Ballinger, M.J., Bruenn, J.A., Kotov, A.A., and Taylor, D.J., Selectively maintained paleoviruses in Holarctic water fleas reveal an ancient origin for phleboviruses, Virology, 2013, vol. 446, pp. 276–282.

    CAS  PubMed  Google Scholar 

  4. Bekker, E.I., Karabanov, D.P., Galimov, Y.R., and Kotov, A.A., DNA barcoding reveals high cryptic diversity in the North Eurasian Moina species (Crustacea: Cladocera), PLoS One, 2016, vol. 11. e0161737. https://doi.org/10.1371/journal.pone.0161737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bekker, E.I., Karabanov, D.P., Galimov, Y.R., Haag, C.R., Neretina, T.V., and Kotov, A.A., Phylogeography of Daphnia magna Straus (Crustacea: Cladocera) in Northern Eurasia: evidence for a deep longitudinal split between mitochondrial lineages, PLoS One, 2018, vol. 13. e0194045. https://doi.org/10.1371/journal.pone.0194045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Belyaeva, M. and Taylor, D.J., Cryptic species within the Chydorus sphaericus species complex (Crustacea: Cladocera) revealed by molecular markers and sexual stage morphology, Mol. Phylogenet. Evol., 2009 vol. 50, pp. 534–546.

    CAS  PubMed  Google Scholar 

  7. Benzie, J.A.H., The genus Daphnia (including Daphniopsis) (Anomopoda: Daphniidae), in Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, 2005, vol. 21, pp. 1–376.

  8. Bochkarev, N.A., Zuykova, E.I., and Katokhin, A.V., Morphology and mitochondrial dna variation of the Siberian whitefish Coregonus lavaretus pidschian (Gmelin) in the upstream water bodies of the Ob and Yenisei rivers, J. Evol. Ecol., 2011, vol. 25, pp. 557–572.

    Google Scholar 

  9. Bolotov, I.N., Kondakov, A.V., Konopleva, E.S., Vikhrev, I.V., Aksenova, O.V., Aksenov, A.S., et al., Integrative taxonomy, biogeography and conservation of freshwater mussels (Unionidae) in Russia, Sci. Rep., 2020, vol. 10, p. 3072. https://doi.org/10.1038/s41598-020-59867-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Di Capua, I., Maffucci, F., Pannone, R., Mazzocchi, M.G., Biffali, E., et al., Molecular phylogeny of Oncaeidae (Copepoda) using nuclear ribosomal internal transcribed spacer (ITS rDNA), PLoS One, 2017, vol. 12, no. 4. e0175662. https://doi.org/10.1371/journal.pone.0175662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Colbourne, J.K. and Hebert, P.D.N., The systematic of North American Daphnia (Crustacea: Anomopoda): a molecular phylogenetic approach, Philos. Trans. R. Soc., B, 1996, vol. 351, pp. 349–360.

  12. Van Damme, K. and Kotov, A.A., The fossil record of the Cladocera (Crustacea: Branchiopoda): evidence and hypotheses, Earth-Sci. Rev., 2016, vol. 163, pp. 162–189.

    Google Scholar 

  13. Darriba, D., Taboada, G.L., Doallo, R., and Posada, D., ModelTest 2: more models, new heuristics and parallel computing, Nat. Methods, 2012, vol. 9, no. 8, p. 772.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dlouhá, S., Thielsch, A., Kraus, R.H.S., Seda, J., Schwenk, K., et al., Identifying hybridizing taxa within the Daphnia longispina species complex: a comparison of genetic methods and phenotypic approaches, Hydrobiologia, 2010, vol. 643, pp. 107–122.

    Google Scholar 

  15. Francisco, F.O., Nunes-Silva, P., Francoy, T.M., Wittmann, D., Imperatriz-Fonseca, V.L., et al., Morphometrical, biochemical and molecular tools for assessing biodiversity. An example in Plebeia remota (Holmberg, 1903) (Apidae, Meliponini), Insectes Soc., 2008, vol. 55, pp. 231–237.

    Google Scholar 

  16. Frey, D.G., Questions concerning cosmopolitanism in Cladocera, Arch. Hydrobiol., 1982, vol. 93, pp. 484–502.

    Google Scholar 

  17. Frey, D.G., The taxonomy and biogeography of the Cladocera, Hydrobiologia, 1987, vol. 145, pp. 5–17.

    Google Scholar 

  18. Friedrich, J., Dandekar, T., Wolf, M., and Muller, T., ProfDist: a tool for the construction of large phylogenetic trees based on profile distances, Bioinformatics, 2005 vol. 21, pp. 2108–2109.

    CAS  PubMed  Google Scholar 

  19. Garibian, P.G., Neretina, A.N., Klimovsky, A.I., and Kotov, A.A., A new case of west-east differentiation of the freshwater fauna in Northern Eurasia: the Pleuroxus trigonellus species group (Crustacea: Cladocera: Chydoridae), Zootaxa, 2018, vol. 4532, pp. 451–482.

    PubMed  Google Scholar 

  20. De Gelas, K. and De Meester, L., Phylogeography of Daphnia magna in Europe, Mol. Ecol., 2005, vol. 1, pp. 753–764.

    Google Scholar 

  21. Gießler, S., Morphological differentiation within the Daphnia longispina group, Hydrobiologia, 2001, vol. 442, pp. 55–66.

    Google Scholar 

  22. Gießler, S. and Englbrecht, C.C., Dynamic reticulate evolution in a Daphnia multispecies complex, J. Exp. Zool., A, 2009, vol. 311, pp. 531–549.

  23. Gießler, S., Mader, E., and Schwenk, K., Morphological evolution and genetic differentiation in daphnia species complexes, J. Exp. Biol., 1999, vol. 12, pp. 710–723.

    Google Scholar 

  24. Giri, F. and Collins, P.A., A geometric morphometric analysis of two sympatric species of the family Aeglidae (Crustacea, Decapoda, Anomura) from the La Plata basin, Ital. J. Zool., 2004, vol. 71, pp. 85–88.

    Google Scholar 

  25. Glagolev, S.M., Morphology, taxonomy and geographical distribution of cladocerans of the genus Daphnia of Eurasia, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Inst. Evol. Morphol. Ekol. Zhiv. Akad. Nauk SSSR, 1986.

  26. Grandcolas, P., Nattier, R., and Trewick, S., Relict species: a relict concept?, Trends Ecol. Evol., 2014, vol. 29, pp. 655–663.

    PubMed  Google Scholar 

  27. Grosswald, M.G., Evraziiskie gidrosistemnye katostrofy i oledeneniya Arktiki (Eurasian Hydrosystem Catastrophies and Glaciations in the Arctic), Moscow: Nauchnyi Mir, 1999.

  28. Grosswald, M.G. and Kotlyakov, V.M., The great periglacial runoff system of Northern Asia and its significance for interregional correlations, in Chetvertichnyi period. Paleografiya i litologiya: Sbornik nauchnykh trudov (Quaternary Period. Paleography and Lithology: Collection of Scientific Works), Chisinau: Shtiinitsa, 1989, pp. 5–13.

  29. Hamrová, E., Krajicek, M., Karanovic, T., Černý, M., and Petrusek, A., Congruent patterns of lineage diversity in two species complexes of planktonic crustaceans, Daphnia longispina (Cladocera) and Eucyclops serrulatus (Copepoda), in East European mountain lakes, Zool. J. Linn. Soc., 2012, vol. 166, pp. 754–757.

    Google Scholar 

  30. Huang, Q., Xu, S.L., Xu, L., and Han, B.P., Haplotype diversity and genetic differentiation of dormant and active populations of Daphnia galeata in Liuxihe Reservoir of Guangdong Province, southern China, J. Lake Sci., 2017, vol. 29, pp. 1209–1216.

    CAS  Google Scholar 

  31. Ishida, S. and Taylor, D.J., Mature habitats associated with genetic divergence despite strong dispersal ability in an arthropod, BMC Exp. Biol., 2007, vol. 7, no. 52. https://doi.org/10.1186/1471-2148-7-52

  32. Ishida, S. and Taylor, D.J., Quaternary diversification in a sexual Holarctic zooplankter, Daphnia galeata, Mol. Ecol., 2007a, vol. 16, pp. 569–582.

    PubMed  Google Scholar 

  33. Ishida, S., Takahashi, A., Matsushima, N., Yokoyama, J., Makino, W., et al., The long-term consequences of hybridization between the two Daphnia species, D. galeata and D. dentifera, in mature habitats, BMC Exp. Biol., 2011, vol. 11, no. 209. https://doi.org/10.1186/1471-2148-11-209

  34. Karabanov, D.P., Bekker, E.I., Shiel, R.J., and Kotov, A.A., Invasion of a Holarctic planktonic cladoceran Daphnia galeata Sars (Crustacea: Cladocera) in the Lower Lakes of South Australia, Zootaxa, 2018, vol. 4402, pp. 136–148.

    PubMed  Google Scholar 

  35. Kirdyasheva, A.G. and Kotov, A.A., Morphology and age variability of Daphnia galeata Sars (Cladocera: Daphniidae) in two adjacent water bodies of the Kola Peninsula, Biol. Bull. (Moscow), 2013, vol. 40, no. 2, pp. 158–168.

    Google Scholar 

  36. Koetschan, C., Forster, F., Keller, A., Schleicher, T., Ruderisch, B., Schwarz, R., et al., The ITS2 database III—sequences and structures for phylogeny, Nucleic Acids Res., 2010, vol. 38, pp. 275–279.

    Google Scholar 

  37. Korovchinsky, N.M., How many species of Cladocera are there?, Hydrobiologia, 1996, vol. 321, pp. 191–204.

    Google Scholar 

  38. Korovchinsky, N.M., The genus Leptodora Lilljeborg (Crustacea: Branchiopoda: Cladocera) is not monotypic: description of a new species from the Amur River basin (Far East of Russia), Zootaxa, 2009, vol. 2120, pp. 39–52.

    Google Scholar 

  39. Kotov, A.A., Morfologiya i filogeniya Anomopoda (Crustacea: Cladocera) (Morphology and Phylogeny of Anomopoda (Crustacea: Cladocera)), Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2013.

  40. Kotov, A.A., A critical review of the current taxonomy of the genus Daphnia O.F. Muller, 1785 (Anomopoda, Cladocera), Zootaxa, 2015, vol. 3911, pp. 184–200.

    PubMed  Google Scholar 

  41. Kotov, A.A., Faunistic complexes of Cladocera (Crustacea, Branchiopoda) of Eastern Siberia and the Far East of Russia, Zool. Zh., 2016, vol. 95, pp. 748–768.

    Google Scholar 

  42. Kotov, A.A. and Korovchinsky, N.M., First record of fossil Mesozoic ctenopoda (Crustacea, Cladocera), Zool. J. Linn. Soc., 2006, vol. 146, pp. 269–274.

    Google Scholar 

  43. Kotov, A.A. and Sinev, A.Yu., Cladocera (Crustacea, Branchiopoda) of the Zeya River basin (Amur region, Russian Federation). 2. Descriptions of new taxa, Zool. Zh., 2011, vol. 90, pp. 272–284.

    Google Scholar 

  44. Kotov, A.A. and Taylor, D.J., Contrasting endemism in pond-dwelling cyclic parthenogens: the Daphnia curvirostris species group (Crustacea: Cladocera), Sci. Rep., 2019, vol. 9, p. 6812. https://doi.org/10.1038/s41598-019-43281-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kotov, A.A., Ishida, S., and Taylor, D.J., A new species in the Daphnia curvirostris (Crustacea: Cladocera) complex from the eastern palearctic with molecular phylogenetic evidence for the independent origin of neckteeth, J. Plankton Res., 2006, vol. 28, pp. 1067–1079.

    Google Scholar 

  46. Kotov, A.A., Karabanov, D.P., Bekker, E.I., Neretina, T.V., and Taylor, D.J., Phylogeography of the chydorus sphaericus group (cladocera: chydoridae) in the northern palearctic, PLoS One, 2016, vol. 11. e0168711. https://doi.org/10.1371/journal.pone.0168711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, pp. 1870–1874.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ma, X., Petrusek, A., Wolinska, J., Gieβler, S., Zhong, Y., et al., Diversity of the Daphnia longispina species complex in Chinese lakes: a DNA taxonomy approach, J. Plankton Res., 2015, vol. 37, pp. 55–65.

    Google Scholar 

  49. Ma, X., Hu, W., Smilauer, P., Yin, M., and Wolinska, J., Daphnia galeata and D. dentifera are geographically and ecologically separated whereas their hybrids occur in intermediate habitats: a survey of 44 Chinese lakes, Mol. Ecol., 2019, vol. 28, pp. 785–802.

    PubMed  Google Scholar 

  50. Mangerud, J., Jakobsson, M., Alexanderson, H., Astakhov, V., Clarke, G.K.C., et al., Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the last glaciation, Quat. Sci. Rev., 2004, vol. 23, pp. 1313–1332.

    Google Scholar 

  51. De Meester, L., Gómez, A., Okamura, B., and Schwenk, K., The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms, Acta Oecol., 2002, vol. 23, pp. 121–135.

    Google Scholar 

  52. Möst, M., Petrusek, A., Sommaruga, R., Juracka, P.J., Slusarczyk, M., et al., At the edge and on the top: molecular identification and ecology of Daphnia dentifera and D. longispina in high-altitude Asian lakes, Hydrobiologia, 2012, vol. 715, pp. 51–62.

    Google Scholar 

  53. Nei, M. and Kumar, S., Molecular Evolution and Phylogenetics, New York: Oxford Univ. Press, 2000.

    Google Scholar 

  54. Nilssen, J.P., Hobaek, A., Petrusek, A., and Skage, M., Restoring Daphnia lacustris G.O. Sars, 1862 (Crustacea, Anomopoda): a cryptic species in the Daphnia longispina group, Hydrobiologia, 2007, vol. 594, pp. 5–17.

    CAS  Google Scholar 

  55. Perrière, G. and Gouy, M., WWW-Query: an on-line retrieval system for biological sequence banks, Biochimie, 1996, vol. 78, pp. 364–369.

    PubMed  Google Scholar 

  56. Petrusek, A., Černý, M., Mergeay, J., and Schwenk, K., Daphnia in the Tatra Mountain lakes: multiple colonization and hidden species diversity revealed by molecular markers, Fundam. Appl. Limnol., Arch. Hydrobiol., 2007, vol. 169, pp. 279–291.

    Google Scholar 

  57. Petrusek, A., Hobaek, A., Nilssen, J.P., Skage, M., Cérný, M., et al., A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda), Zool. Scr., 2008, vol. 37, pp. 507–519.

    Google Scholar 

  58. Petrusek, A., Thielsch, A., and Schwenk, K., Mitochondrial sequence variation suggests extensive cryptic diversity within the Western Palearctic Daphnia longispina complex, Limnol. Oceanogr., 2012, vol. 57, pp. 1838–1845.

    Google Scholar 

  59. Popova, E.V., Petrusek, A., Korinek, V., Mergeay, J., Bekker, E.I., et al., Revision of the Old World Daphnia (Ctenodaphnia) similis group (Cladocera: Daphniidae), Zootaxa, 2016, vol. 161, pp. 1–40.

    Google Scholar 

  60. Rogers, D.C., Kotov, A.A., Sinev, A.Y., Glagolev, S.M., Korovchinsky, N.M., et al., Keys to Palaearctic fauna, chapter 16.2: Arthropoda: class Branchiopoda, in Thorp and Covich’s Freshwater Invertebrates, Thorp, J.H. and Rogers, D.C., Eds., London: Academic, 2019, vol. 4, 4th ed., pp. 643‒724.

  61. Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, pp. 6–25.

    Google Scholar 

  62. Santamaria, C.A., Mateos, M., DeWitt, T.J., and Hurtado, L.A., Constrained body shape among highly genetically divergent allopatric lineages of the supralittoral isopod Ligia occidentalis (Oniscidea), Ecol. Evol., 1987, vol. 6, pp. 1537–1554.

    Google Scholar 

  63. Schultz, J. and Wolf, M., ITS2 sequence-structure analysis in phylogenetics: a how-to manual for molecular systematics, Mol. Phylogenet. Evol., 2009, vol. 52, pp. 520–523.

    CAS  PubMed  Google Scholar 

  64. Schwenk, K., Junttila, P., Rautio, M., Bastiansen, F., Knapp, J., et al., Ecological, morphological, and genetic differentiation of Daphnia (Hyalodaphnia) from the Finnish and Russian Subarctic, Limnol. Oceanogr., 2004, vol. 49, pp. 532–539.

    Google Scholar 

  65. Schwenk, K., Posada, D., and Hebert, P.D.N., Molecular systematics of European Hyalodaphnia: the role of contemporary hybridization in ancient species, Proc. R. Soc. London, Ser. B, 2000, vol. 267, pp. 1833–1842.

    CAS  Google Scholar 

  66. Seibel, P.N., Muller, T., Dandekar, T., and Wolf, M., Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE, BMC Res. Notes, 2008, vol. 1, p. 91.

    PubMed  PubMed Central  Google Scholar 

  67. Silva, I.C., Mesquita, N., and Paula, J., Genetic and morphological differentiation of the mangrove crab Perisesarma guttatum (Brachyura: Sesarmidae) along an East African latitudinal gradient, Biol. J. Linn. Soc., 2010, vol. 99, pp. 28–46.

    Google Scholar 

  68. Smirnov, N.N. and Sheveleva, N.G., Chydorus irinae sp. n. (Anomopoda, Chydoridae, Chydorinae) from the Tom River (Amur River basin, Russia), Zool. Zh., 2010, vol. 89, no. 5, pp. 635–638.

    Google Scholar 

  69. Smirnov, N.N., Physiology of the Cladocera, London: Academic, 2017, 2nd ed.

    Google Scholar 

  70. Smirnov, N.N. and Kotov, A.A., On morphological radiation of Cladocera (Crustacea), Invertebr. Zool., 2018, vol. 15, pp. 231–248.

    Google Scholar 

  71. Tamura, K. and Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol. Biol. Evol., 1993, vol. 10, pp. 512–526.

    CAS  PubMed  Google Scholar 

  72. Taylor, D.J., Hebert, P.D.N., and Colbourne, J.K., Phylogenetics and evolution of the Daphnia longispina group (Crustacea) based on 12S rDNA sequence and allozyme variation, Mol. Phylogenet. Evol., 1996 vol. 5, pp. 495–510.

    CAS  PubMed  Google Scholar 

  73. Taylor, D.J., Sprenger, H.L., and Ishida, S., Geographic and phylogenetic evidence for dispersed nuclear introgression in a daphniid with sexual propagules, Mol. Ecol., 2005, vol. 14, pp. 525–537.

    CAS  PubMed  Google Scholar 

  74. Thielsch, A., Brede, N., Petrusek, A., De Meester, L., and Schwenk, K., Contribution of cyclic parthenogenesis and colonization history to population structure in Daphnia, Mol. Ecol., 2009, vol. 18, pp. 1616–1628.

    PubMed  Google Scholar 

  75. Thielsch, A., Knell, A., Mohammadyari, A., Petrusek, A., and Schwenk, K., Divergent clades or cryptic species? Mitonuclear discordance in a Daphnia species complex, BMC Exp. Biol., 2017, vol. 17, no. 227. https://doi.org/10.1186/s12862-017-1070-4

  76. Ventura, M., Petrusek, A., Miró, A., Hamrová, E., Buňay, D., et al., Local and regional founder effects in lake zooplankton persist after thousands of years despite high dispersal potential, Mol. Ecol., 2014, vol. 23, pp. 1014–1027.

    CAS  PubMed  Google Scholar 

  77. Vinarski, M.V., Bolotov, I.N., Schniebs, K., Nekhaev, I.O., and Hundsdoerfer, A.K., Endemics or strangers? The integrative re-appraisal of taxonomy and phylogeny of the Greenland Lymnaeidae (Mollusca: Gastropoda), C. R. Biol., 2017, vol. 340, pp. 541–557.

    PubMed  Google Scholar 

  78. Volkov, I.A. and Kaz’min, S.P., Water runoff of the last glaciation of the north of Eurasia, Geogr. Prir. Resur., 2007, no. 4, pp. 7–10.

  79. Vysotskiy, E.M., Geomorphology of the basin of Teletskoe Lake, in Physical and Geological Environment of Lake Teletskoe, Selegei, V., Dehandschutter, B., Klerkx, J., and Vysotsky, E., Eds., Tervuren: Musee Royal de I Afrigue Centrale Tervuren, 2001, pp. 164–181.

  80. Wiemers, M., Keller, A., and Wolf, M., ITS2 secondary structure improves phylogeny estimation in a radiation of blue butterflies of the subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus), BMC Exp. Biol., 2009, vol. 9, no. 300. https://doi.org/10.1186/1471-2148-9-300

  81. Wolf, M., Ruderisch, B., Dandekar, T., and Muller, T., ProfDistS: (Profile-) Distance based phylogeny on sequence-structure alignments, Bioinformatics, 2008, vol. 24, pp. 2401–2402.

    CAS  PubMed  Google Scholar 

  82. Xu, S., Hebert, P.D.N., Kotov, A.A., and Cristescu, M.E., The non-cosmopolitanism paradigm of freshwater zooplankton: insights from the global phylogeography of the predatory cladoceran Polyphemus pediculus (Crustacea, Onychopoda), Mol. Ecol., 2009, vol. 18, pp. 5161–5179.

    CAS  PubMed  Google Scholar 

  83. Xu, L., Lin, Q., Xu, S., Gu, Y., Hou, J., et al., Daphnia diversity on the Tibetan Plateau measured by DNA taxonomy, Ecol. Evol., 2018, vol. 8, pp. 5069–5078.

    PubMed  PubMed Central  Google Scholar 

  84. Yin, M., Wolinska, J., and Gießler, S., Clonal diversity, clonal persistence and rapid taxon replacement in natural populations of species and hybrids of the Daphnia longispina complex, Mol. Ecol., 2010, vol. 19, pp. 4168–4178.

    PubMed  Google Scholar 

  85. Zuykova, E.I., Identification and phylogeny of cryptic species of the Daphnia longispina complex (Anomopoda, Daphniidae) using ITS2 secondary structure, Russ. J. Genet., 2019, vol. 55, pp. 604–621.

    CAS  Google Scholar 

  86. Zuykova, E.I. and Bochkarev, N.A., Population and interspecific morphological variability of species of the genus Daphnia O.F. Müller, 1785 (Cladocera, Daphniidae), Zool. Zh., 2016, vol. 95, pp. 805–814.

    Google Scholar 

  87. Zuykova, E.I., Bochkarev, N.A., Semenova, A.S., and Katokhin, A.V., Morphological differentiation, mitochondrial and nuclear DNA variability between geographically distant populations of Daphnia galeata and Daphnia cucullata (Anomopoda, Daphniidae), J. Sib. Fed. Univ., Biol., 2010, vol. 4, no. 3, pp. 434–453.

    Google Scholar 

  88. Zuykova, E.I., Bochkarev, N.A., and Katokhin, A.V., Molecular genetic identification and phylogeny of Daphnia Species (Crustacea, Cladocera) from water bodies of the Lake Chany basin, Russ. J. Genet., 2013a, vol. 49, pp. 206–213.

    CAS  Google Scholar 

  89. Zuykova, E.I., Bochkarev, N.A., and Katokhin, A.V., Identification of the Daphnia species (Crustacea: Cladocera) in the lakes of the Ob and Yenisei river basins: morphological and molecular phylogenetic approaches, Hydrobiologia, 2013b, vol. 715, pp. 135–150.

    CAS  Google Scholar 

  90. Zuykova, E.I., Bochkarev, N.A., and Sheveleva, N.G., Genetic polymorphism, distribution of haplotypes, and phylogeny of species of the genus Daphnia (Cladocera: Anomopoda) from some water bodies of Russia based on the results of 16S gene sequencing of mitochondrial DNA, Russ. J. Genet., 2016, vol. 52, pp. 1–13.

    Google Scholar 

  91. Zuykova, E.I., Simonov, E.P., and Bochkarev, N.A., Comparative morphological and genetic analysis of populations and species of the genus Daphnia O.F. Müller, 1785 (Crustacea; Daphniidae) from Lake Glubokoe and Lake Chany, Biol. Bull. (Moscow), 2017, vol. 44, no. 3, pp. 277–289.

    Google Scholar 

  92. Zuykova, E.I., Simonov, E.P., Bochkarev, N.A., Talor, D.J., and Kotov, A.A., Resolution of the Daphnia umbra problem (Crustacea: Cladocera) using an integrated taxonomic approach, Zool. J. Linn. Soc., 2018a, vol. 184, pp. 969–998.

    Google Scholar 

  93. Zuykova, E.I., Simonov, E.P., Bochkarev, N.A., Abramov, S.A., Sheveleva, N.G., and Kotov, A.A., Contrasting phylogeographic patterns and demographic history in closely related species of Daphnia longispina group (Crustacea: Cladocera) with focus on North-Eastern Eurasia, PLoS One, 2018b, vol. 13. e0207347. https://doi.org/10.1371/journal.pone.0207347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zuykova, E.I., Sheveleva, N.G., and Kotov, A.A., Redescription of Daphnia turbinata Sars, 1903 (Crustacea: Cladocera: Daphniidae), Zootaxa, 2019a, vol. 4658, pp. 317–330.

    Google Scholar 

  95. Zuykova, E.I., Bochkarev, N.A., Talor, D.J., and Kotov, A.A., Unexpected endemism in the Daphnia longispina complex (Crustacea: Cladocera) in Southern Siberia, PLoS One, 2019b, vol. 14. e0221527. https://doi.org/10.1371/journal.pone.0221527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This paper is dedicated to the memory of Nikolai Nikolaevich Smirnov (1928–2019), one of the leaders of the study of crustaceans in the 20th century. We are grateful to the numerous colleagues who provided the zooplankton samples used in these studies.

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 20-04-00610-a). The sequencing of the ITS2 fragment was carried out within the framework of the Program of Basic Scientific Research (FNI) of the State Academies of Sciences for 2013–2020 (project no. VI.51.1.9. AAAA-A16-116121410119-4). Data analysis was carried out with partial support of the state program to improve the competitiveness of the Kazan (Volga Region) Federal University among the world’s leading research and educational centers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. I. Zuykova, N. A. Bochkarev or A. A. Kotov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by S. Nikolaeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuykova, E.I., Bochkarev, N.A. & Kotov, A.A. Specific and Genetic Structure of the Daphnia longispina s. l. Complex (Cladocera, Daphniidae) in Water Bodies of Southern Siberia. Biol Bull Russ Acad Sci 48, 880–891 (2021). https://doi.org/10.1134/S1062359021070323

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021070323

Keywords:

Navigation