Skip to main content
Log in

Regulation of the Phenolic Compounds Accumulation in the Tea-Plant Callus Culture with a Separate and Combined Effect of Light and Cadmium Ions

  • PLANT PHYSIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The effect of light and cadmium ions (Cd) on the morphophysiological characteristics and accumulation of low molecular weight phenolic antioxidants in the tea plant Camellia sinensis L. callus culture under their separate and combined action is studied. It was established that the light exposure and the cadmium intake separately led to a change in the morphophysiological characteristics of the culture, a decrease in its growth, and activation of the antioxidant system. It was noted that it was manifested in an increase in the total content of phenolic compounds, flavans, and proanthocyanidins (to a lesser extent) and did not depend on the activity of the phenolic metabolism key enzyme, L-phenylalanine ammoniac lyase. It was found that the cell response was more pronounced under the action of Cd than under the action of light. In some cases, these indicators correlated with the level of lipid peroxidation in callus cultures. It is shown that all changes were more pronounced under the combined action of light and Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Agati, G., Azzarello, E., Pollastri, S., and Tattini, M., Flavonoids as antioxidants in plants: location and functional significance, Plant Sci., 2012, vol. 196, pp. 67–76.

    Article  CAS  PubMed  Google Scholar 

  2. Asati, A., Pichhode, M., and Nikhil, K., Effect of heavy metals on plants: an overview, Int. J. Appl. Innov. Eng. Manage., 2016, vol. 5, pp. 2319–4847.

    Google Scholar 

  3. Baskar, V., Venkatesh, R., and Ramalingam, S., Flavonoids (antioxidants systems) in higher plants and their response to stresses, in Antioxidants and Antioxidant Enzymes in Higher Plants, Cham: Springer, 2018, pp. 253–268.

    Google Scholar 

  4. Bidel, L.P., Coumans, M., Baissac, Y., Doumas, P., and Jay-Allemand, C., Biological activity of phenolics in plant cells, Rec. Adv. Polyphenol Res., 2010, vol. 2, pp. 163–205.

    Article  CAS  Google Scholar 

  5. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, nos. 1–2, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  6. Brodersen, C. and McElrone, A., Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants, Front. Plant Sci., 2013, vol. 4, p. 108.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Butenko, R.G., Biologiya kletok vysshikh rastenii in vitro i biotekhnologii na ikh osnove (Biology of Cells of Higher Plants in vitro and Biotechnology Based on Them), Moscow: FBK-PRESS, 1999.

  8. Cheynier, V., Comte, G., Davies, K.M., Lattanzio, V., and Martens, S., Plant phenolics: recent advances on their biosynthesis, genetics and ecophysiology, Plant Physiol. Biochem., 2013, vol. 72, pp. 1–20.

    Article  CAS  PubMed  Google Scholar 

  9. Chezem, W.R. and Clay, N.K., Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs, Phytochemistry, 2016, vol. 131, pp. 26–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cortleven, A., Marg, I., Yamburenko, M.V., Schlicke, H., Hill, K., Grimm, B., Schaller, G.E., and Schmulling, T., Cytokinin regulates etioplast-chloroplast transition through activation of chloroplast-related genes, Plant Physiol., 2016, vol. 172, p. 464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dias, M.I., Sousa, M.J., Alves, R.C., and Ferreira, I.C., Exploring plant tissue culture to improve the production of phenolic compounds: a review, Ind. Crops Prod., 2016, vol. 82, pp. 9–22.

    Article  CAS  Google Scholar 

  12. Durazzo, A., Lucarini, M., Souto, E.B., Cicala, C., Caiazzo, E., Izzo, A.A., Novellino, E., and Santini, A., Polyphenols: a concise overview on the chemistry, occurrence, and human health, Phytother. Res., 2019, vol. 33, no. 9, pp. 2221–2243.

    Article  PubMed  Google Scholar 

  13. Espinosa-Leal, C.A., Puente-Garza, C.A., and Garcia-Lara, S., In vitro plant tissue culture: means for production of biological active compounds, Planta, 2018, vol. 248, no. 1, pp. 1–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Foti, M.C. and Amorati, R., ROS and phenolic compounds, in Reactive Oxygen Species in Biology and Human Health, Boca Raton: CRC Press, 2016, pp. 49–65.

    Google Scholar 

  15. Fraser, K., Harrison, S.J., Lane, G.A., Otter, D.E., Hemar, Y., Quek, S.Y., and Rasmussen, S., HPLC-MS/MS profiling of proanthocyanidins in teas: a comparative study, J. Food Composit. Anal., 2012, vol. 26, nos. 1–2, pp. 43–51.

    Article  CAS  Google Scholar 

  16. Goncharuk, E.A. and Zagoskina, N.V., Heavy metals: intake, toxicity and protective mechanisms of plants (by the example of cadmium ions), Visn. Kharkiv. Nats. Agrarn. Univ., Ser.: Biol., 2017, no. 1, pp. 35–49.

  17. Hodges, D.M., DeLong, J.M., Forney, C.F., and Prange, R.K., Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds, Planta, 1999, vol. 207, no. 4, pp. 604–611.

    Article  CAS  Google Scholar 

  18. Hong, G., Wang, J., Zhang, Y., Hochstetter, D., Zhang, S., Pan, Y., Shi, Y., Xu, P., and Wang, Y., Biosynthesis of catechin components is differentially regulated in dark-treated tea (Camellia sinensis L.), Plant Physiol. Biochem., 2014, vol. 78, pp. 49–52.

    Article  CAS  PubMed  Google Scholar 

  19. Huang, D., Gong, X., Liu, Y., Zeng, G., Lai, C., Bashir, H., Zhou, L., Wang, D., Xu, P., Cheng, M., and Wan, J., Effects of calcium at toxic concentrations of cadmium in plants, Planta, 2017, vol. 245, no. 5, pp. 863–873.

    Article  CAS  PubMed  Google Scholar 

  20. Ismael, M.A., Elyamine, A.M., Moussa, M.G., Cai, M., Zhao, X., and Hu, C., Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers, Metallomics, 2019, vol. 11, no. 2, pp. 255–277.

    Article  CAS  PubMed  Google Scholar 

  21. Ivanov, Y.V., Kartashov, A.V., Ivanova, A.I., Savochkin, Y.V., and Kuznetsov, V.V., Effects of zinc on Scots pine (Pinus sylvestris L.) seedlings grown in hydroculture, Plant Physiol. Biochem., 2016, vol. 102, pp. 1–9.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, X., Liu, Y., Wu, Y., Tan, H., Meng, F., Wang, Y., Li, M., Zhao, L., Liu, L., Qian, Y., and Gao, L., Analysis of accumulation patterns and preliminary study on the condensation mechanism of proanthocyanidins in the tea plant (Camellia sinensis), Sci. Rep., 2015, vol. 5, p. 8742.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Klejdus, B., Kovacik, J., and Babula, P., PAL inhibitor evokes different responses in two Hypericum species, Plant Physiol. Biochem., 2013, vol. 63, pp. 82–88.

    Article  CAS  PubMed  Google Scholar 

  24. Kubalt, K., The role of phenolic compounds in plant resistance, Biotechnol. Food Sci., 2016, vol. 80, no. 2, pp. 97–108.

    Google Scholar 

  25. Li, Y., Kong, D., Fu, Y., Sussman, M.R., and Wu, H., The effect of developmental and environmental factors on secondary metabolites in medicinal plants, Plant Physiol. Biochem., 2020, vol. 148, pp. 80–89.

    Article  CAS  PubMed  Google Scholar 

  26. Lux, A., Martinka, M., Vaculík, M., and White, P.J., Root responses to cadmium in the rhizosphere: a review, J. Exp. Bot., 2011, vol. 62, no. 1, pp. 21–37.

    Article  CAS  PubMed  Google Scholar 

  27. Matkowski, A., Plant in vitro culture for the production of antioxidants—a review, Biotechnol. Adv., 2008, vol. 26, no. 6, pp. 548–560.

    Article  CAS  PubMed  Google Scholar 

  28. Min, B., Gu, L., McClung, A.M., Bergman, C.J., and Chen, M.H., Free and bound total phenolic concentrations, antioxidant capacities, and profiles of proanthocyanidins and anthocyanins in whole grain rice (Oryza sativa L.) of different bran colours, Food Chem., 2012, vol. 133, no. 3, pp. 715–722.

    Article  CAS  Google Scholar 

  29. Mukhopadhyay, M., Mondal, T.K., and Chand, P.K., Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review, Plant Cell Rep., 2016, vol. 35, no. 2, pp. 255–287.

    Article  CAS  PubMed  Google Scholar 

  30. Nile, S.H., Keum, Y.S., Nile, A.S., Jalde, S.S., and Patel, R.V., Antioxidant, anti-inflammatory, and enzyme inhibitory activity of natural plant flavonoids and their synthesized derivatives, J. Biochem. Mol. Toxicol., 2018, vol. 32, no. 1. e22 002.

    Article  CAS  Google Scholar 

  31. Nosov, A.M., Secondary metabolism, in Fiziologiya rastenii (Plant Physiology), Ermakov, I.P., Ed., Moscow: Akademiya, 2005, pp. 588–620.

  32. Nosov, A.M., Methods for assessing and characterizing the growth of cell cultures of higher plants, in Molekulyarno-geneticheskie i biokhimicheskie metody v sovremennoi biologii rastenii (Molecular Genetic and Biochemical Methods in Modern Plant Biology), Moscow: BINOM, 2011, pp. 386–403.

  33. Nosov, A.M., Application of cell technologies for production of plant-derived bioactive substances of plant origin, Appl. Biochem. Microbiol., 2012, vol. 48, no. 7, pp. 609–624.

    Article  CAS  Google Scholar 

  34. Olenichenko, N.A. and Zagoskina, N.V., Response of winter wheat to cold: production of phenolic compounds and L-phenylalanine ammonia lyase activity, Appl. Biochem. Microbiol., 2005, vol. 41, no. 6, pp. 600–603.

    Article  CAS  Google Scholar 

  35. Ossipova, S., Ossipov, V., Haukioja, E., Loponen, J., and Pihlaja, K., Proanthocyanidins of mountain birch leaves: quantification and properties, Phytochem. Anal.: Inter. J. Plant Chem. Biochem. Techn., 2001, vol. 12, no. 2, pp. 128–133.

    Article  CAS  Google Scholar 

  36. Pérez-López, U., Sgherri, C., Miranda-Apodaca, J., Micaelli, F., Lacuesta, M., Mena-Petite, A., Quartacci, M., and Muñoz-Rueda, A., Concentration of phenolic compounds is increased in lettuce grown under high light intensity and elevated CO2, Plant Physiol. Biochem., 2018, vol. 123, pp. 233–241.

    Article  PubMed  CAS  Google Scholar 

  37. Pina, A. and Errea, P., Differential induction of phenylalanine ammonia-lyase gene expression in response to in vitro callus unions of Prunus spp., J. Plant Physiol., 2008, vol. 165, no. 7, pp. 705–714.

    Article  CAS  PubMed  Google Scholar 

  38. Rogozhin, V.V. and Rogozhina, T.V., Praktikum po fiziologii i biokhimii rastenii (A Practical Course in Plant Physiology and Biochemistry), St. Petersburg: GIORD, 2013.

  39. Seregin, I.V. and Ivanov, V.B., Physiological aspects of cadmium and lead toxic effects on higher plants, Russ. J. Plant Physiol., 2001, vol. 48, no. 4, pp. 523–544.

    Article  CAS  Google Scholar 

  40. Seregin, I.V., Shpigun, L.K., and Ivanov, V.B., Distribution and toxic effects of cadmium and lead on maize roots, Russ. J. Plant Physiol., 2004, vol. 51, no. 4, pp. 525–533.

    Article  CAS  Google Scholar 

  41. Shanying, H.E., Xiaoe, Y.A.N.G., Zhenli, H.E., and Baligar, V.C., Morphological and physiological responses of plants to cadmium toxicity: a review, Pedosphere, 2017, vol. 27, no. 3, pp. 421–438.

    Article  Google Scholar 

  42. Song, Y., Jin, L., and Wang, X., Cadmium absorption and transportation pathways in plants, Int. J. Phytoremed., 2017, vol. 19, no. 2, pp. 133–141.

    Article  CAS  Google Scholar 

  43. Sutini, S., Susilowati, S., Indra, R., and Djoko, A.P., Growth and accumulation of flavan-3-ol in Camellia sinensis through callus culture and suspension culture method, J. Biol. Res., 2016, vol. 22, pp. 27–31.

    Article  Google Scholar 

  44. Tarakhovskii, Yu.S., Kim, Yu.A., and Abdrasilov, B.S., Muzafarov, E.N. Flavonoidy: biokhimiya, biofizika, meditsina (Flavonoids: Biochemistry, Biophysics, and Medicine), Pushchino: Sunchrobook, 2013.

  45. Wang, T., Li, Q., and Bi, K., Bioactive flavonoids in medicinal plants: structure, activity and biological fate, Asian J. Pharm. Sci., 2018, vol. 13, no. 1, pp. 12–23.

    Article  PubMed  Google Scholar 

  46. Zagoskina, N.V., Dubravina, G.A., and Zaprometov, M.N., The specific features of chloroplasts and phenolic compound accumulation in photomixotrophic tea callus cultures, Russ. J. Plant Physiol., 2000, vol. 47, no. 4, pp. 468–473.

    CAS  Google Scholar 

  47. Zagoskina, N.V., Dubravina, G.A., Alyavina, A.K., and Goncharuk, E.A., Effect of ultraviolet (UV-B) radiation on the formation and localization of phenolic compounds in tea plant callus cultures, Russ. J. Plant Physiol., 2003, vol. 50, no. 2, pp. 270–275.

    Article  CAS  Google Scholar 

  48. Zaid, A., Mohammad, F., and Fariduddin, Q., Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint (Mentha arvensis L.), Physiol. Mol. Biol. Plants, 2020, vol. 26, no. 1, pp. 25–39.

    Article  CAS  PubMed  Google Scholar 

  49. Zaprometov, M.N., Phenolic compounds and methods of their study, in Biokhimicheskie metody v fiziologii rastenii (Biochemical Methods in Plant Physiology), Moscow: Nauka, 1971, pp. 185–197.

  50. Zaprometov, M.N., Fenol’nye soedineniya. Rasprostranenie, metabolizm i funktsii v rasteniyakh (Phenolic Compounds. Distribution, Metabolism, and Function in Plants), Moscow: Nauka, 1993.

  51. Zubova, M.Yu., Nechaeva, T.L., and Zagoskina, N.V., Formation and compartmentalization of proanthocyanidins in in vitro tea plant cultures, Vestn. Biotekhnol., 2019, vol. 15, no. 4, pp. 5–10.

    Google Scholar 

Download references

Funding

This study was supported by the Ministry of Education and Science of the Russian Federation under a state assignment of Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, project no. AAAA-A-19-11904189005-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Zubova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Shulskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubova, M.Y., Nechaeva, T.L., Kartashov, A.V. et al. Regulation of the Phenolic Compounds Accumulation in the Tea-Plant Callus Culture with a Separate and Combined Effect of Light and Cadmium Ions. Biol Bull Russ Acad Sci 47, 593–604 (2020). https://doi.org/10.1134/S1062359020060175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359020060175

Navigation