Skip to main content

Advertisement

Log in

Manufacturer Identification and Active Ingredient Determination of Medicinal Products by Smartphone-Based Near-IR Colorimetry

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A nondestructive method for the analysis of pharmaceuticals (nonsteroidal anti-inflammatory drugs, fluoroquinolones, acetylsalicylic acid, vinpocetine, tetracyclines) via IR diffuse reflection recorded using a smartphone and a 3D-printed device is proposed. Diffuse reflection of IR radiation (850 nm) from tablet medications can be captured using a smartphone camera. Blister packaging and tablet coatings slightly decrease the intensity of the reflection signal at a wavelength of 850 nm, as confirmed by a comparative analysis of colorimetric measurements of the pharmaceutical samples inside packaging, outside packaging, and fractured tablets. A correlation between the analytical signal and the concentration of the active substance is observed regardless of the study of the tablet. The dataset was processed using principal component analysis (PCA), hierarchical cluster analysis (HCA), partial least squares regression (PLS), and the least squares method using the PhotoMetrix PRO® smartphone software. These algorithms can be used to identify medications by their manufacturer and determine the concentration of active substances. Colorimetric signals from tablets of the same manufacturer form distinct clusters in the dendrograms created using the HCA algorithm. The PCA data indicate the arrangement of signals from tablets of different manufacturers in separate quadrants, facilitating the identification of the pharmaceutical companies. The use of chemometric analysis for determining the concentration of the active substance is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kosenko, V.V., Trapkova, A.A., and Tarasova, S.A., Vestn. Roszdravnadzora, 2012, no. 6, p. 17.

  2. Kuz’mina, N.E., Moiseev, S.V., and Romanov, B.K., Vedomosti Nauchn. Tsentra Ekspert. Sredstv Med. Primen., 2021, no. 11(1), p. 49. https://doi.org/10.30895/1991-2919-2021-11-1-49-54

  3. Balyklova, K.S., Titova, A.V., Sadchikova, N.P., Rodionova, O.E., Shishova, E.Yu., Skudareva, E.G., and Gorpinchenko, N.V., Vestn. Roszdravnadzora, 2013, no. 2, p. 62.

  4. Basova, E.M., Litvinenko, Yu.N., and Polotnyanko, N.A., Vestn. Mezhdunar. Univ. Prirody, O-va Cheloveka “Dubna”, 2019, vol. 43, no. 2, p. 7.

  5. Basova, E.M. and Polotnyanko N., Vestn. Mezhdunar. Univ. Prir., O-va Cheloveka “Dubna”, 2020, vol. 49, no. 4, p. 3.

  6. Monogarova, O.V., Oskolok, K.V., and Apyari, V.V., J. Anal. Chem., 2018, vol. 73, no. 11, p. 1076. https://doi.org/10.1134/S1061934818110060

    Article  CAS  Google Scholar 

  7. Apyari, V.V., Gorbunova, M.V., Isachenko, A.I., Dmitrienko, S.G., and Zolotov, Yu.A., J. Anal. Chem., 2017, vol. 72, no. 11, p. 1127. https://doi.org/10.1134/S106193481711003X

    Article  CAS  Google Scholar 

  8. Ivanov, V.M. and Kuznetsova, O.V., Russ. Chem. Rev., 2001, vol. 70, no. 5, p. 357. https://doi.org/10.1070/RC2001v070n05ABEH000636

    Article  CAS  Google Scholar 

  9. Huang, X., Xu, D., Chen, J., Liu, J., Li, Y., Song, J., Ma, X., and Guo, J., Analyst, 2018, vol. 143, p. 5330. https://doi.org/10.1039/c8an01269e

    Article  CAS  Google Scholar 

  10. Rezazadeh, M., Seidi, Sh., Lid, M., Pedersen-Bjergaard, S., and Yamini, Y., TrAC, Trends, Anal.Chem., 2019, vol. 118, p. 548. https://doi.org/10.1016/j.trac.2019.06.019

    Article  CAS  Google Scholar 

  11. Amelin, V.G., Shogah, Z.A.C., and Bolshakov, D.S., Pharm. Chem. J., 2021, vol. 55, no. 3, p. 964.

    Article  CAS  Google Scholar 

  12. Amelin, V.G., Shogah, Z.A.C., and Bolshakov, D.S., J. Anal. Chem., 2021, vol. 76, p. 797.

    Article  CAS  Google Scholar 

  13. Amelin, V.G., Shogah, Z.A.C., Bolshakov, D.S., and Tret’yakov, A.V., J. Appl. Spectrosc., 2022, vol. 89, no. 1, p. 75.

    Article  CAS  Google Scholar 

  14. Amelin, V.G., Shogah, Z.A.C., and Bolshakov, D.S., Pharm. Chem. J., 2021, vol. 55, no. 9, p. 964.

    Article  CAS  Google Scholar 

  15. Böck, F.C., Helfer, G.A., Costa, A.B., Dessuy, M.B., and Ferrão, M.F., J. Chemometrics, 2020, vol. 34, p. e3251. https://doi.org/10.1002/cem.3251

    Article  CAS  Google Scholar 

  16. Helfer, G.A., Magnus, V.S., Bock, F.C., Teichmann, A., Ferrao, M.F., and Costa, A.B., J. Braz. Chem., 2017, vol. 28, p. 328. https://doi.org/10.5935/0103-5053.20160182

    Article  CAS  Google Scholar 

  17. Rateni, G., Dario, P., and Cavall, F., Sensors, 2017, vol. 17, p. 1453. https://doi.org/10.3390/s17061453

    Article  PubMed  PubMed Central  Google Scholar 

  18. Amelin, V.G., Shogah, Z.A.C., and Tretyakov, A.V., J. Anal. Chem., 2024, vol. 79, no. 1, p. 50.

    Article  CAS  Google Scholar 

  19. Rodionova, O.E. and Pomerantsev, A.L., Russ. Chem. Rev., 2006, vol. 75, no. 4, p. 271. https://doi.org/10.1070/RC2006v075n04ABEH003599

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the funding of the Russian State Center for Animal Feed and Drug Standardization and Quality. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Amelin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amelin, V.G., Emelyanov, O.E. & Tretyakov, A.V. Manufacturer Identification and Active Ingredient Determination of Medicinal Products by Smartphone-Based Near-IR Colorimetry. J Anal Chem 79, 601–613 (2024). https://doi.org/10.1134/S1061934824050034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934824050034

Keywords:

Navigation