Skip to main content
Log in

Electrophoretic Determination of Carbohydrates in Samples of Natural Origin by an Indirect Detection Method

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Versions of the electrophoretic determination of neutral carbohydrates by a method of indirect detection using acridone acetic and folic acids as absorbing additives (AA) are proposed. The effects of the nature and concentration of AA, alkali, and various modifiers (cetyltrimethylammonium bromide, CTAB) and ionic liquids (1-dodecyl-3-methylimidazolium chloride and 1-hexadecyl-3-methylimidazolium chloride) on the electrophoretic parameters of the migration of analytes are studied. The lowest limits of detection for carbohydrates are achieved in a background electrolyte containing 2.5 mM acridone acetic acid, 75 mM KOH, 0.5 mM CTAB, and 5 vol % MeOH, and amount to 4−10 μg/mL with an efficiency of up to 350 thousand t.p. Under the conditions found, samples of buckwheat honey and human blood plasma are analyzed. It is found that in analyzing food products, it is preferable to use folic acid as a AA, because it provides the best selectivity for the separation of carbohydrates: for the sucralose−sucrose pair, the resolution factor is 7.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Chen, Y.F., Li, M.Y., Wang, S.R., Peng, H.J., Reid, S., Ni, N.T., Fang, H., and Xu, W.F., Carbohydrate biomarkers for future disease detection and treatment, Sci. China Chem., 2010, vol. 53, no. 1, p. 3. https://doi.org/10.1007/s11426-010-0021-3

    Article  CAS  Google Scholar 

  2. Kiely, L.J. and Hickey, R.M., in Glycosylation, Davey, G.P., Ed., New York: Humana, 2022, p. 67. https://doi.org/10.1007/978-1-0716-1685-7_4

    Book  Google Scholar 

  3. Nagy, G., Peng, T., and Pohl, N.L.B., Anal. Methods, 2017, vol. 9, no. 24, p. 3579. https://doi.org/10.1039/c7ay01094j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kartsova, L.A., Maliushevska, A.V., and Kolobova, E.A., J. Anal. Chem., 2023, vol. 78, no. 2, p. 156. https://doi.org/10.1134/S1061934823020041

    Article  Google Scholar 

  5. Rovio, S., Yli-Kauhaluoma, J., and Siren, H., Electrophoresis, 2007, vol. 28, no. 17, p. 3129. https://doi.org/10.1002/elps.200600783

    Article  CAS  PubMed  Google Scholar 

  6. Alekseeva, A.V., Kartsova, L.A., and Kazachishcheva, N.V., J. Anal. Chem., 2010, vol. 65, no. 2, p. 202. )https://doi.org/10.1134/S1061934810020176

    Article  CAS  Google Scholar 

  7. Schwaiger, H., Oefner, P.J., Huber, C., Grill, E., and Bonn, G.K., Electrophoresis, 1994, vol. 15, no. 7, p. 941. https://doi.org/10.1002/ELPS.11501501138

    Article  CAS  PubMed  Google Scholar 

  8. Taga, A., Suzuki, S., and Honda, S., J. Chromatogr. A, 2001, vol. 911, no. 2, p. 259. https://doi.org/10.1016/S0021-9673(01)00516-7

    Article  CAS  PubMed  Google Scholar 

  9. Soga, T. and Ross, G.A., J. Chromatogr. A, 1999, vol. 837, nos. 1–2, p. 231. https://doi.org/10.1016/S0021-9673(99)00092-8

    Article  CAS  Google Scholar 

  10. Vaher, M., Koel, M., Kazarjan, J., and Kaljurand, M., Electrophoresis, 2011, vol. 32, no. 9, p. 1068. https://doi.org/10.1002/elps.201000575

    Article  CAS  PubMed  Google Scholar 

  11. Jiang, T.F., Chong, L., Yue, M.E., Wang, Y.H., and Lv, Z.H., Food Anal. Methods, 2015, vol. 8, no. 10, p. 2588. https://doi.org/10.1007/s12161-015-0157-z

    Article  Google Scholar 

  12. Jager, A.V., Tonin, F.G., and Tavares, M.F.M., J. Sep. Sci., 2007, vol. 30, p. 586. https://doi.org/10.1002/jssc.200600370

    Article  CAS  PubMed  Google Scholar 

  13. Dominguez, M.A., Jacksen, J., Emmer, A., and Centurion, M.E., Microchem. J., 2016, vol. 129, p. 1. https://doi.org/10.1016/j.microc.2016.05.017

    Article  CAS  Google Scholar 

  14. Warren, C.R. and Adams, M.A., J. Exp. Bot., 2000, vol. 51, no. 347, p. 1147. https://doi.org/10.1093/JEXBOT/51.347.1147

    Article  CAS  PubMed  Google Scholar 

  15. Xu, X., Kok, W.T., and Poppe, H., J. Chromatogr. A, 1995, vol. 716, nos. 1–2, p. 231. https://doi.org/10.1016/0021-9673(95)00552-X

    Article  CAS  Google Scholar 

  16. Lu, B. and Westerlund, D., Electrophoresis, 1996, vol. 17, no. 2, p. 325. https://doi.org/10.1002/ELPS.1150170207

    Article  CAS  PubMed  Google Scholar 

  17. Gürel, A., Hızal, J., Öztekin, N., and Erim, F.B., Chromatographia, 2006, vol. 64, nos 5-6, p. 321. https://doi.org/10.1365/s10337-006-0032-6

    Article  CAS  Google Scholar 

  18. Mikkers, F.E.P., Everaerts, F.M., and Verheggen, T.P.E.M., J. Chromatogr. A, 1979, vol. 169, p. 1. https://doi.org/10.1016/0021-9673(75)85028-X

    Article  CAS  Google Scholar 

  19. Shamsi, Sh.A., in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, Meyers, R.A., Ed., Hoboken: Wiley, 2006, p. 1. https://doi.org/10.1002/9780470027318.a5404

    Book  Google Scholar 

  20. Li, W., Zhang, M., Zhang, J., and Han, Y., Front. Chem. China, 2006, vol. 1, p. 438. https://doi.org/10.1007/s11458-006-0069-y

    Article  Google Scholar 

  21. Kolobova, E., Kartsova, L., Kravchenko, A., and Bessonova, E., Talanta, 2018, vol. 188, p. 183. https://doi.org/10.1016/j.talanta.2018.05.057

    Article  CAS  PubMed  Google Scholar 

  22. Blesic, M., Marques, M.H., Plechkova, N.V., Seddon, K.R., Rebelo, L.P.N., and Lopes, A., Green Chem., 2007, vol. 9, p. 481. https://doi.org/10.1039/b615406a

    Article  CAS  Google Scholar 

  23. Kaper, H. and Smarsly, B., Z. Phys. Chem., 2006, vol. 220, p. 1455. https://doi.org/10.1524/zpch.2006.220.10.1455

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Science Park of St. Petersburg State University, the Resource Center “Methods for analyzing the composition of matter.”

Funding

The work was carried out with financial support from the Russian Science Foundation, project no. 19-13-00370.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Maliushevska.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent was obtained from all individual participants who gave blood plasma.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Kudrinskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolobova, E.A., Maliushevska, A.V. & Kartsova, L.A. Electrophoretic Determination of Carbohydrates in Samples of Natural Origin by an Indirect Detection Method. J Anal Chem 79, 224–232 (2024). https://doi.org/10.1134/S1061934824020102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934824020102

Keywords:

Navigation