Skip to main content
Log in

Plasmonic Enhancement of Dye Fluorescence in Polymer/Metal Nanocomposites

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The effect of the plasmonic enhancement of dye fluorescence in poly(vinyl butyral) films containing Ag/SiO2 core-shell nanoparticles has been thoroughly studied. It has been shown that the magnitude of this effect can be quite large (up to 5 times) even for a dye having a very high quantum yield (coumarin 7). Therewith, it substantially depends on the size and concentration of Ag/SiO2 particles and the quantum yield of a dye. The results obtained are discussed with involvement of mechanisms reported in the literature for plasmonic enhancement of fluorescence of dyes characterized by high and low quantum yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. This shell thickness makes it possible to exclude the quenching of dye fluorescence almost completely.

  2. For convenience, we use this term for plasmonic NPs as well, although the term “extinction spectra” would be more adequate in this case, because such structures can both absorb and scatter incident radiation.

  3. It should be emphasized that no marked change is observed in the molar extinction coefficient of the dye under our experimental conditions.

REFERENCES

  1. Surface Plasmon Enhanced Coupled and Controlled Fluorescence, Geddes, C.D., Ed., Hoboken: Wiley, 2017.

    Google Scholar 

  2. Anger, P., Bharadwaj, P., and Novotny, L., Phys. Rev. Lett., 2006, vol. 96, p. 113002.

    Article  Google Scholar 

  3. Ming, T., Chen, H., Jiang, R., Li, Q., and Wang, J., J. Phys. Chem. Lett., 2012, vol. 3, p. 191.

    Article  CAS  Google Scholar 

  4. Guzatov, D.V., Vaschenko, S.V., Stankevich, V.V., Lunevich, A.Ya., Glukhov, Y.F., and Gaponenko, S.V., J. Phys. Chem. C, 2012, vol. 116, p. 10723.

    Article  CAS  Google Scholar 

  5. Deng, W., Xie, F., Baltar, H.T.M.C.M., and Goldys, E.M., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 15695.

    Article  CAS  Google Scholar 

  6. Li, J.-F., Li, C.-Y., and Aroca, R.F., Chem. Soc. Rev., 2017, vol. 46, p. 3962.

    Article  CAS  Google Scholar 

  7. Jeong, Y., Kook, Y.-M., Lee, K., and Koh, W.-G., Biosens. Bioelectron., 2018, vol. 111, p. 102.

    Article  CAS  Google Scholar 

  8. Gartia, M.R., Eichorst, J.P., Clegg, R.M., and Liu, G.L., Appl. Phys. Lett., 2012, vol. 101, p. 023118.

    Article  Google Scholar 

  9. Austin, L.A., Kang, B., and El-Sayed, M.A., Nano Today, 2015, vol. 10, p. 542.

    Article  CAS  Google Scholar 

  10. Le, K.Q., Plasmonics, 2015, vol. 10, p. 475.

    Article  CAS  Google Scholar 

  11. Abadeer, N.S., Brennan, M.R., Wilson, W.L., and Murphy, C.J., ACS Nano, 2014, vol. 8, p. 8392.

    Article  CAS  Google Scholar 

  12. Kim, J., Dantelle, G., Revaux, A., Bérard, M., Huignard, A., Gacoin, T., and Boilot, J.-P., Langmuir, 2010, vol. 26, p. 8842.

    Article  CAS  Google Scholar 

  13. Bardhan, R., Grady, N.K., and Halas, N.J., Small, 2008, vol. 4, p. 1716.

    Article  CAS  Google Scholar 

  14. Gill, R. and Le Ru, E.C., Phys. Chem. Chem. Phys., 2011, vol. 13, p. 16366.

    Article  CAS  Google Scholar 

  15. Mohan, H., Master Degree Thesis (Univ. of Windsor, Ontario, Canada, 2012).

  16. Cui, Q., He, F., Li, L., and Möhwald, H., Adv. Colloid Interface Sci., 2014, vol. 207, p. 164.

    Article  CAS  Google Scholar 

  17. Meng, X., Kildishev, A.V., Fujita, K., Tanaka, K., and Shalaev, V.M., Nano Lett., 2013, vol. 13, p. 4106.

    Article  CAS  Google Scholar 

  18. Ning, S., Zhang, N., Dong, H., Hou, X., Zhang, F., and Wu, Z., Opt. Mater. Express, 2018, vol. 8, p. 3014.

    Article  CAS  Google Scholar 

  19. Silvert, P.-Y., Herrera-Urbina, R., and Tekaia-Elhsissen, K., J. Mater. Chem., 1997, vol. 7, p. 293.

    Article  CAS  Google Scholar 

  20. Bastús, N.G., Merkoci, F., Piella, J., and Puntes, V., Chem. Mater., 2014, vol. 26, p. 2836.

    Article  Google Scholar 

  21. Bai, Z., Chen, R., Si, P., Huang, Y., Sun, H., and Kim, D.-H., ACS Appl. Mater. Interfaces, 2013, vol. 5, p. 5856.

    Article  CAS  Google Scholar 

  22. Taniguchi, M. and Lindsey, J.S., Photochem. Photobiol., 2018, vol. 94, p. 290.

    Article  CAS  Google Scholar 

  23. Fita, P., Fedoseeva, M., and Vauthey, E., J. Phys. Chem. A, 2011, vol. 115, p. 2465.

    Article  CAS  Google Scholar 

  24. Lakowicz, J.R., Principles of Fluorescence Spectroscopy, New York: Springer Science + Business Media, 2006.

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. V.A. Kuz’min (Emanuel Institute of Biochemical Physics, Russian Academy of Sciences) for supplying the sample of eosin B.

Funding

This work was performed according to an order of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Dement’eva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roumyantseva, T.B., Dement’eva, O.V., Protsenko, I.E. et al. Plasmonic Enhancement of Dye Fluorescence in Polymer/Metal Nanocomposites. Colloid J 81, 733–740 (2019). https://doi.org/10.1134/S1061933X19060140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X19060140

Navigation