Skip to main content
Log in

Thermal relaxation of defects in nanosized mechanically activated МоО3

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The regularities of the thermal relaxation of structural defects (paramagnetic centers and microdistortions), as well as the sizes of coherent-scattering regions and the external surface, of mechanically activated МоО3 have been studied with the use of X-ray diffraction, electron paramagnetic resonance, and adsorption/desorption methods. It has been revealed that heating of activated samples at temperatures below 450°C is accompanied by the death of paramagnetic centers, annealing of microdistortions, and liberation of molecular oxygen. It has been assumed that oxygen results from the rupture of deformed Mo–O–Mo bridge bonds formed by its atoms. Above 450°C, recrystallization processes occur, which are accompanied by an increase in the sizes of the coherent-scattering regions and the MoO3 (monoclinic) → MoO3 (orthorhombic) phase transition. The thermal stability of the external particle surface depends on mechanical activation conditions. For samples activated at early stages of activation (fracture regime), the specific surface area decreases by more than an order of magnitude, when a temperature of 450°C is reached. At higher activation doses (friction regime), the sample is not sintered in the same temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suryanarayana, C., Prog. Mater. Sci., 2001, vol. 46, p. 1.

    Article  CAS  Google Scholar 

  2. Baláž P., Achimovicová M., Baláž M., Billik, P., Cherkezova-Zheleva, Z., Criado, J.M., Delogu, F., Dutková, E., Gaffet, E., Gotor, F.J., Kumar, R., Mitov, I., Rojac, T., Senna, M., Streletskii, A., and Wieczorek-Ciurowa, K., Chem. Soc. Rev., 2013, vol. 42, p. 7571.

    Article  Google Scholar 

  3. Grigorieva, T.F., Barinova, A.P., and Lyakhov, N.Z., J. Nanopart. Res., 2003, vol. 5, p. 439.

    Article  CAS  Google Scholar 

  4. Streletskii, A.N., Kolbanev, I.V., Borunova, A.B., and Butyagin, P.Yu., in Experimental and Theoretical Studies in Modern Mechanochemistry, Delogu, F. and Mulas, G., Eds., Kerala: Transworld Research Network, 2010, p. 192.

  5. Fundamental’nye osnovy mekhanicheskoi aktivatsii, mekhanosinteza i mekhanokhimicheskikh tekhnologii (Fundamentals of Mechanical Activation, Mechanosynthesis and Mechanichemnical Technologies), Avvakumov, E.G., Ed., Novosibirsk Sib. Otd. RAN, 2010.

  6. Mekhanokompozity—prekursory dlya sozdaniya materialov s novymi svoistvami (Mechanocomposites as Precursors for Creation of Materials with New Properties), Lomovskii, O.I., Ed, Novosibirsk Sib. Otd. RAN, 2010.

  7. Dolgoborodov, A.Yu. and Streletskii, A.N., RF Patent 2235085, 2004.

  8. Dreizin, E. and Schoenitz, M., US Patent 7524355 B2, 2009.

  9. Dolgoborodov, A.Yu., Makhov, M.N., Streletskii, A.N., Kolbanev, A.N., Gogulya, M.F., and Fortov, V.E., Khim. Fiz., 2004, vol. 23, no. 9, p. 85.

    Google Scholar 

  10. Dolgoborodov, A.Yu., Streletskii, A.N., Makhov, M.N., Teselkin, V.A., Guseinov, Sh.L., Storozhenko, P.A., and Fortov, V.E., Khim. Fiz., 2012, vol. 31, no. 8, p. 37.

    CAS  Google Scholar 

  11. Dolgoborodov, A.Yu., Fiz. Goreniya Vzryva, 2015, vol. 51, p. 102.

    Google Scholar 

  12. Dreizin, E., Prog. Energy Combust. Sci., 2009, vol. 35, p. 141.

    Article  CAS  Google Scholar 

  13. Williams, R.A., Schoenitz, M., Ermoline, A., and Dreizin, E., Thermochim. Acta, 2014, vol. 594, p. 1.

    Article  CAS  Google Scholar 

  14. Ermoline, A., Schoenitz, M., and Dreizin, E.L., Combust. Flame, 2011, vol. 158, p. 1076.

    Article  CAS  Google Scholar 

  15. Andryushkova, O.V., Poluboyarov, V.A., Pauli, I.A., and Korotaeva, Z.A., Mekhanokhimiya sozdaniya materialov s zadannymi svoistvami (Mechanochemistry of Production of Materials with Desired Properties), Novosibirsk NGTU, 2010.

    Google Scholar 

  16. Polubojarov, V.A., Kiselevich, S.N., Kirichenko, O.A., Pauli, I.A., Korotaeva, Z.A., Dektjarev, S.P., and Ancharov, A.I., Inorg. Mater., 1998, vol. 34, p. 1152.

    Google Scholar 

  17. Mestl, G., Herzog, B., Schlogl, R., and Knozinger, H., Langmuir, 1995, vol. 11, p. 3027.

    Article  CAS  Google Scholar 

  18. Mestl, G., Verbruggen, N.F.D., Bosch, E., and Knozinger, H., Langmuir, 1996, vol. 12, p. 2961.

    Article  CAS  Google Scholar 

  19. Sivak, M.V., Streletskii, A.N., Kolbanev, I.V., Leonov, A.V., and Permenov, D.G., Colloid J., 2015, vol. 77, p. 333.

    Article  CAS  Google Scholar 

  20. Streletskii, A.N., Abstracts of Papers, 2nd Int. Conf. on Structural Applications of Mechanical Alloying, De Barbadillo, J.J., Froes, F.H., and Schwarz, R., Eds., 1993, p. 51.

  21. O’Brien, M.G. and Jacques S.D.M., J. Phys. Chem., 2009, vol. 113, p. 4890.

    Google Scholar 

  22. Schoenitz, M., Umbrajkar, S., and Dreizin, E.L., J. Propulsion Power, 2007, vol. 23, p. 683.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Streletskii.

Additional information

Original Russian Text © M.V. Sivak, A.N. Streletskii, I.V. Kolbanev, A.V. Leonov, E.N. Degtyarev, 2016, published in Kolloidnyi Zhurnal, 2016, Vol. 78, No. 5, pp. 618–628.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivak, M.V., Streletskii, A.N., Kolbanev, I.V. et al. Thermal relaxation of defects in nanosized mechanically activated МоО3 . Colloid J 78, 674–684 (2016). https://doi.org/10.1134/S1061933X16050185

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X16050185

Navigation