Skip to main content
Log in

Physicochemical and electrorheological properties of titanium dioxide modified with metal oxides

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The properties of electrorheological fluids containing dispersed phase of titanium dioxide nanoparticles prepared via the sol-gel method and modified with metal oxides have been studied. Titanium dioxide has the anatase structure with crystallite sizes of 8–10 nm and a specific surface area of 90–140 m2/g. It has been found that the magnitude of the electrorheological response of the filler is determined by the specific surface area and the content of a modifying component. The strongest electrorheological response has been revealed for titanium dioxide modified with aluminum oxide at an Al content of 6.5–7.0 mol % relative to TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, X.P., Yin, J.B., Xiang, L.Q., and Zhao, Q., J. Mater. Sci., 2002, vol. 37, p. 2569.

    Article  CAS  Google Scholar 

  2. Wang, B.X., Zhao, X.P., Zhao, Y., and Ding, Ch.L., Compos. Sci. Technol., 2007, vol. 67, p. 3031.

    Article  CAS  Google Scholar 

  3. Kraev, A.S., Agafonov, A.V., Davydova, O.I., Nefedova, T.A., Trusova, T.A., and Zakharov, A.G., Colloid J., 2007, vol. 69, p. 620.

    Article  CAS  Google Scholar 

  4. Tang, H., He, J., and Persello, J., Particuology, 2010, vol. 8, p. 442.

    Article  CAS  Google Scholar 

  5. Strengl, V., Bakardjieva, S., and Murafa, N., Mater. Chem. Phys., 2009, vol. 114, p. 217.

    Article  Google Scholar 

  6. Chubukov, P.A., Denisov, N.N., Gorenberg, A.A., et al., Zh. Fiz. Khim., 2008, vol. 82, p. 1765.

    Google Scholar 

  7. Shi, D., Zheng, D., Khu, Ya., and Zhao, Yu., Kinet. Katal., 2008, vol. 49, p. 293.

    Article  Google Scholar 

  8. Sedneva, T.A., Lokshin, E.P., Belikov, M.L., and Kalinnikov, V.T., Dokl. Phys. Chem., 2012, vol. 443, p. 57.

    Article  CAS  Google Scholar 

  9. Bouslama, M., Amamra, M.C., Jia, Z., et al., ACS Catal., 2012, vol. 2, p. 1884.

    Article  CAS  Google Scholar 

  10. Jung, K.Y. and Park, S.B., Korean J. Chem. Eng., 2010, vol. 41, p. 520.

    Google Scholar 

  11. Qiao, Y., Yin, J., and Zhao, X., Smart Mater. Struct., 2007, vol. 16, p. 332.

    Article  CAS  Google Scholar 

  12. Liu, X., Guo, J., Cheng, Y., et al., Rheol. Acta, 2010, vol. 49, p. 837.

    Article  CAS  Google Scholar 

  13. Korobko, E.V., Eschenko, L.S., Bedik, N.A., and Zhuk, G.M., Int. J. Mod. Phys. B, 2007, vol. 21, p. 3841.

    Article  Google Scholar 

  14. Agafonov, A.V., Nefedova, T.A., and Davydova, O.I., Colloid J., 2008, vol. 70, p. 535.

    Article  CAS  Google Scholar 

  15. Kraev, A.S., Agafonov, A.V., Nefedova, T.A., et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2007, vol. 50, no. 6, p. 35.

    CAS  Google Scholar 

  16. Malykh, T.G., Sharygin, L.M., Tret’yakov, S.Ya., et al., Neorg. Mater., 1980, vol. 16, p. 1857.

    CAS  Google Scholar 

  17. Kim, D.S. and Kwak, S.Y., J. Appl. Catal. A, 2007, vol. 323, p. 110.

    Article  CAS  Google Scholar 

  18. Mehrizad, A., Gharbani, P., and Tabatabii, S.M., J. Iran. Chem. Res., 2009, no. 2, p. 145.

    Google Scholar 

  19. Shang, Y.L., Jia, Y.L., Liao, F.H., et al., J. Mater. Sci., 2007, vol. 42, p. 2586.

    Article  CAS  Google Scholar 

  20. Wu, Q., Zhao, B.Y., Fang, C., and Hu, K.A., Eur. Phys. J. E, 2005, vol. 17, p. 63.

    Article  CAS  Google Scholar 

  21. Yin, J. and Zhao, X., J. Mater. Chem., 2003, vol. 13, p. 689.

    Article  CAS  Google Scholar 

  22. Yin, J.B. and Zhao, X.P., J. Phys. Chem. B, 2006, vol. 110, p. 12916.

    Article  CAS  Google Scholar 

  23. Shang, Y.L., Jia, Y.L., Liao, F.H., et al., J. Mater. Sci., 2007, vol. 42, p. 2586.

    Article  CAS  Google Scholar 

  24. Murashkevich, A.N., Alisienok, O.A., Zharskii, I.M., and Korbko, E.V., Inorg. Mater., 2013, vol. 49, p. 165.

    Article  CAS  Google Scholar 

  25. Limar’, T.F., Savos’kina, A.I., Andreeva, V.I., and Mank, V.V., Zh. Neorg. Khim., 1969, vol. 14, p. 2307.

    Google Scholar 

  26. Kozub, G.M., Zarko, V.I., Antonova, L.S., and Pavlov, V.V., Ukr. Khim. Zh., 1982, vol. 48, p. 827.

    CAS  Google Scholar 

  27. Kofstad, P., Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, New York: Wiley, 1972.

    Google Scholar 

  28. Camaratta, R., Wilson, A., and Bergmann, C.P., Rev. Adv. Mater. Sci., 2011, vol. 27, p. 64.

    CAS  Google Scholar 

  29. Sedneva, T.A., Lokshin, E.P., Belikov, M.L., and Knyazeva, A.I., Inorg. Mater., 2013, vol. 49, p. 786.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Murashkevich.

Additional information

Original Russian Text © A.N. Murashkevich, O.A. Alisienok, I.M. Zharskii, E.V. Korobko, N.A. Zhuravskii, Z.A. Novikova, 2014, published in Kolloidnyi Zhurnal, 2014, Vol. 76, No. 4, pp. 506–512.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murashkevich, A.N., Alisienok, O.A., Zharskii, I.M. et al. Physicochemical and electrorheological properties of titanium dioxide modified with metal oxides. Colloid J 76, 465–470 (2014). https://doi.org/10.1134/S1061933X14040115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X14040115

Keywords

Navigation