Skip to main content
Log in

Perturbed Hamiltonian Dynamics from Deformation of Poisson Brackets

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

In the context of normal forms, we study a class of perturbed Hamiltonian systems on phase spaces with symmetry which arise from deformation of Poisson brackets. By combining the averaging method with some facts on the Poisson invariant cohomology, we derive various normalization criteria. In particular, we compute the invariant normal forms of first order for systems of adiabatic type on Poisson fibrations by using the technique of Hannay-Berry connections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (Encyclopedia of Math. Sci., vol. 3, Dynamical Systems III, Springer-Verlag, Berlin-New York, 1988).

    MATH  Google Scholar 

  2. M. Avendaño Camacho and Y. M. Vorobiev, “Homological Equations for Tensor Fields and Periodic Averaging,” Russ. J. Math. Phys. 18 (3), 243–257 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Avendaño-Camacho and Yu. Vorobiev, “On the Global Structure of Normal Forms for Slow-Fast Hamiltonian Systems,” Russ. J. Math. Phys. 20 (2), 138–148 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Avendaño-Camacho, J. A. Vallejo, and Yu. Vorobiev, “Higher Order Corrections to Adiabatic Invariants of Generalized Slow-Fast Hamiltonian Systems,” J. Math. Phys. 54, 1–15 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Avendaño-Camacho and Yu. Vorobiev, “Deformations of Poisson Structures on Fibered Manifolds and Adiabatic Slow-Fast Systems,” Int. J. Geom. Methods Mod. Phys. 14 (6), 1750086–1–11750086–5 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. V. Berry and P. Shukla, “Slow Manifold and Hannay Angle in the Spinning Top,” Eur. J. Phys. 32, 115–127 (2011).

    Article  MATH  Google Scholar 

  7. R. Cushman, “Normal Form for Hamiltonian Vector fields with Periodic flow,” in Differential Geometric Methods in Mathematical Physics (Reidel, Dordrecht-Boston, Mass., 1984), pp. 125–144.

    Chapter  Google Scholar 

  8. R. Flores Espinoza and Yu. M. Vorobjev, “On Perturbations of Hamiltonian Systems Generated by Contractions of Lie Algebras,” in New Trends of Hamiltonian systems and celestial mechanics (E. Lacomba and J. Libre eds. World Scientific Publ., 1996), pp. 357–374.

  9. R. Flores-Espinoza and Yu. Vorobjev, “Relativistic Corrections to Elementary Galilean Dynamics and Deformations of Poisson Brackets,” in Hamiltonian Systems and Celestial Mechanics (HAMSYS-98) (ed. J. Delgado, E. Lacomba, E. Perez-Chavela, and J. Llibre, World Scientific Monograph Series in Mathematics. 6. World Scientific Publ. Co., 2000), pp. 161–173.

  10. R. Flores Espinoza, “Perturbations of Collective Hamiltonian Systems Generated by Lie Algebra Contractions,” Journal of Physics: Conference Series 343, 012035 (2012).

    Google Scholar 

  11. V. L. Ginzburg, “Momentum Mappings and Poisson Cohomology,” Internat. J. Math. 7 (3), 329–358 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Golin, A. Knauf, and S. Marmi, “The Hannay Angles: Geometry, Adiabaticity, and an Example,” Commun. Math. Phys. 123, 95–122 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. M. V. Karasev and V. P. Maslov, “Nonlinear Poisson brackets. Geometry and quantization,” in Transl. of Math. Monographs (AMS, Providence, 1993), Vol. 119.

    Google Scholar 

  14. M. V. Karasev, “Adiabatic Approximation via Hodograph Translation and Zero-Curvature Equations,” Russ. J. Math. Phys. 21 (2), 197–218 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. V. Karasev, “Adiabatics Using the Phase Space Translations and Small Parameter Dynamics,” Russ. J. of Math. Phys. 22 (1), 20–25 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. M. V. Karasev, “Magneto-Dimensional Resonance. Pseudospin Phase and Hidden Quantum Number,” Russ. J. of Math. Phys. 24 (3), 326–335 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. A. Lichnerowicz, “Les variétés de Poisson et leurs algèbres de Lie associetes,” J. Differential Geom. 12, 253–300 (1977).

    Article  MATH  Google Scholar 

  18. R. G. Littlejohn and S. Weigert, “Adiabatic Motion of a Neutral Spinning Particle in a Inhomogeneous Magnetic Field,” Phys. Rev. 48 (2), 924–940 (1993).

    Article  ADS  Google Scholar 

  19. J. E. Marsden, R. Montgomery, and T. Ratiu, “Reduction, Symmetry and Phases in Mechanics,” Memoirs of AMS, Providence 88 (436), 1–110 (1990).

    MathSciNet  MATH  Google Scholar 

  20. I. Vaisman, Lectures on the Geometry of Poisson Manifolds (Birkhauser, Basel, 1994).

    Book  MATH  Google Scholar 

  21. Yu. M. Vorob’ev and M. V. Karasev, “Poisson Manifolds and Their Schouten Bracket,” Funct. Anal. Appl. 22, 1–9 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  22. Yu. Vorobiev and M. Avendano-Camacho, “The Averaging Method on Slow-Fast Phase Spaces with Symmetry,” J. Phys.: Conf. Ser. 343, 1–11 (2012).

    Google Scholar 

  23. Yu. M. Vorob’ev and M. V. Karasev, “Corrections to Classical Dynamics and Quantization Condition which Arise in the Deformation of Poison Bracket,” Soviet Math. Dokl. 36 (3), 594–598 (1988).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The authors are very grateful to José C. Ruíz-Pantaleón for fruitful discussions. This research was partially supported by CONACYT under the grants CB2013 no. 219631 and CB2015 no. 258302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Vorobiev.

Additional information

To the memory of Mikhail Karasev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avendaño-Camacho, M., Flores-Espinoza, R. & Vorobiev, Y. Perturbed Hamiltonian Dynamics from Deformation of Poisson Brackets. Russ. J. Math. Phys. 26, 277–285 (2019). https://doi.org/10.1134/S106192081903004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106192081903004X

Navigation