Skip to main content
Log in

Directional Characteristics of a Laser Pulsed Thermoacoustic Emitter in Nonmagnetic Metals

  • Acoustic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Results of experiments on studying the dependence of the directivity of a pulsed laser thermoacoustic emitter of longitudinal and transverse ultrasonic waves that operates in a nonmagnetic conducting medium on the surface density of laser-radiation heat power are presented. The results can be recommended for nondestructive testing of nonmagnetic materials and articles with laser ultrasonic sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simonova, V.A., Savateeva, E.V., Karabutov, A.A., Karabutov, A.A., Kaptil’nyi, A.G., Ksenofontov, D.M., and Podymova, N.B., Optoacoustic and laser diagnostics and nondestructive testing, Vestn. Russ. Found. Fundam. Res., 2014, no. 3.

  2. Kenderian, S., Djordjevic, B.B., and Green, R.E., Point and line source laser generation of ultrasound for inspection of internal and surface flaws in rail and structural materials, Res. Nondestr. Eval, 2001, vol. 13, pp. 189–200.

    Article  Google Scholar 

  3. Dewhurst, R.J. and Dutton, B., Laser/EMAT measurement systems for materials evaluation, J. Phys.: Conf. Ser., 2007, vol. 76, conf. 1, 012013 p.

    Google Scholar 

  4. Kalimullin, R.I., Migachev, S.A., and Khasanov, A.A., Developing a technique for nondestructive ultrasonic testing by means of laser generation of bulk and surface waves, Izv. Vyssh. Uchebn. Zaved.: Probl. Energ., 2010, no. 9–10, pp. 92–97.

    Google Scholar 

  5. Rizzo, P., Ni, X.-L., and Han, J.-G., Structural health monitoring of immersed structures by means of guided ultrasonic waves, J. Intell. Mater. Syst. Struct., 2010, vol. 21, no. 14, pp. 1397–1407.

    Article  Google Scholar 

  6. Bychenok, V.A. and Kinzhagulov, I.Yu., Laser ultrasonic testing of thin-walled soldered junctions in the chambers of liquid-propellant rocket engines, Izv. Vyssh. Uchebn. Zaved.: Priborostr., 2011, vol. 54, no. 7, pp. 50–54.

    Google Scholar 

  7. Golenishchev-Kutuzov, V.A., Kalimullin, R.I., Migachev, S.A., Petrushenko, Yu.Ya., and Khasanov, A.A., Laser acoustic method for the inspection of flaws in metals and the metallized coatings of dielectrics, Russ. J. Nondestr. Test., 2011, vol. 47, no. 2, pp. 118–122.

    Article  Google Scholar 

  8. Sun, J.-H., Zhao, Y., Ma, J., Song, J.-F., Guo, R., Liu, S., and Nan, G.-Y., Jia Z.-Q., Research on laser-EMA ultrasonic detection system for the defects of rail screw hole, Guangdianzi, Jiguang, 2014, vol. 25, no. 6, pp. 1165–1170.

    Google Scholar 

  9. Karpenko, O.N., Kirpichnikov, A.P., Oleshko, V.S., Popov, A.V., and Tkachenko, D.P., Laser optoacoustic method for evaluating stressedly deformed state in the blades of gas-turbine engines, Vestn. Tekhnol. Univ., 2014, vol. 17, no. 2, pp. 251–253.

    Google Scholar 

  10. Karpenko, O.N., Oleshko, V.S., Popov, A.V., and Samoilenko, V.M., On the estimation of stressedly deformed state of the blades of a gas-turbine engine by the laser optoacoustic method, Nauchn. Vestn. MGTU GA, 2014, no. 206, pp. 96–102.

    Google Scholar 

  11. Popovich, A.A., Masailo, D.V., Sufiyarov, V.Sh., Borisov, E.V., Polozov, I.A., Bychenok, V.A., Kinzhagulov, I.Yu., Berkutov, I.V., Ashikhin, D.S., and Il’inskii, A.V, A laser ultrasonic technique for studying the properties of products manufactured by additive technologies, Russ. J. Nondestr. Test., 2016, vol. 52, no. 6, pp. 303–309.

    Article  Google Scholar 

  12. Gurevich, S.Yu., Petrov, Yu.V., Golubev, E.V., and Karasev, O.V., Experimental study of directional characteristics of a pulsed laser thermoacoustic radiator, Russ. J. Nondestr. Test., 2016, vol. 52, no. 6, pp. 315–323.

    Article  Google Scholar 

  13. Chabanov, V.E., Lazernyi ul’trazvukovoi kontrol' materialov (Laser Ultrasonic Testing of Materials), Leningrad: Izd. Leningr. Univ., 1986.

    Google Scholar 

  14. Edwards, C., Taylor, G.S., and Palmer, S.B., Ultrasonic generation with a pulsed TEA CO2 laser, J. Phys. D: Appl. Phys., 1989, vol. 22, no. 9, p. 1266–1270.

    Article  Google Scholar 

  15. Davies, S.J., Edwards, C., Taylor, G.S., and Palmer, S.B., Laser-generated ultrasound: its properties, mechanisms and multifarious applications, J. Phys. D: Appl. Phys., 1993, vol. 26, no. 3, pp. 329–348.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Gurevich.

Additional information

Original Russian Text © S.Yu. Gurevich, Yu.V. Petrov, E.V. Golubev, 2017, published in Defektoskopiya, 2017, No. 4, pp. 22–26.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurevich, S.Y., Petrov, Y.V. & Golubev, E.V. Directional Characteristics of a Laser Pulsed Thermoacoustic Emitter in Nonmagnetic Metals. Russ J Nondestruct Test 53, 260–264 (2017). https://doi.org/10.1134/S1061830917040027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830917040027

Keywords

Navigation