Skip to main content
Log in

Nondestructive testing of the fatigue properties of air plasma sprayed thermal barrier coatings by pulsed thermography1

  • Thermal Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The fatigue properties of air plasma sprayed (APS) thermal barrier coatings (TBC) were investigated by quantitative Pulsed Thermography (PT). This analysis principally concerned with microstructural evolution during the thermal cyclic. The microstructural features of the specimens were examined by scanning electron microscopy (SEM). The TBC fatigue life was correlated with the development of the thermally grown oxide (TGO) and defects cracks. For better understanding of the thermal response from the surface of TBC, APS TBC samples were inspected as a function of ageing time by PT. The changes in the thermal response amplitude (TRA) were found to correlate with the TGO layer growth and crack nucleation, which was verified by SEM results. The experimental results demonstrated that the thermal response decreased correspondingly along with the increase of the TGO and cracks thickness. The relationships of TRA obtained from the surface of TBC samples with the thickness of TGO and cracks were established. A simple and effective method for quantitative measuring TGO layer and cracks thicknesses using the nondestructive testing of PT was proposed. The experimental results provide a basis for the application of PT in the nondestructive testing of the fatigue properties of TBC thermal fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brindley, W.J. and Miller, R.A., Thermal barrier coating life and isothermal oxidation of low-pressure plasmasprayed bond coat alloys, Surf. Coat. Technol., 1990, vol. 43, no. 1, pp. 446–457.

    Article  Google Scholar 

  2. Wright, P.K., Mechanisms governing the performance of thermal barrier coatings, current opinion in solid state and materials science, Solid. State. Mater. Sci., 1999, vol. 4, no. 3, p. 255–265.

    Article  Google Scholar 

  3. Guo, H.B., Vaβen, R., and Stover, D., Thermophysical properties and thermal cycling behavior of plasma sprayed thick thermal barrier coatings, Surf. Coat. Technol., 2005, vol. 192, no. 1, p. 48–56.

    Article  Google Scholar 

  4. Qiang Xu, Wei Pan, Jingdong Wang, et al., Preparation and thermophysical properties of Dy2Zr2O7 ceramic for thermal barrier coatings, Mater. Lett., 2005, vol. 59, pp. 2804–2807.

    Article  Google Scholar 

  5. Bao, Z.B., Wang, Q.M., Li, W.Z., et al., Preparation and hot corrosion behavior of an Al-gradient NiCoCrAlYSiB coating on a Ni-base superallo, Corr. Sci., 2009, vol. 51, pp. 860–867.

    Article  Google Scholar 

  6. Gosipathala Sreedhar and Raja, V.S., Hot corrosion of YSZ/Al2O3 dispersed NiCrAlY plasma-sprayed coatings in Na2SO4–10 wt % NaCl melt., Corr. Sci., 2010, vol. 8, pp. 2592–2602.

    Google Scholar 

  7. Tolpygo, V.K. and Clarke, D.R., Rumpling of CVD (Ni, Pt)Al diffusion coatings under intermediate temperature cycling, Surf. Coat. Technol., 2009, vol. 203, no. 20, pp. 3278–3285.

    Article  Google Scholar 

  8. Evans, A.G., Mumm, D.R., Hutchinson, J.W., et al., Mechanisms controlling the durability of thermal barrier coatings, Prog. Mater. Sci., 2001, vol. 46, no. 5, pp. 505–553.

    Article  Google Scholar 

  9. Sohn, Y.H., Kim, J.H., Jordan, E.H., et al., Thermal cycling of EB-PVD/MCrAlY thermal barrier coatings, I. Microstructural development and spallation mechanisms, Surf. Coat. Technol., 2001, vol. 146, no. 9, pp. 70–78.

    Article  Google Scholar 

  10. Nusair Khan, A., Khan, S.H., Ali Farhad, et al., Evaluation of ZrO2–24MgO ceramic coating by eddy current method, Comput. Mater. Sci., 2009, vol. 44, no. 3, pp. 1007–1012.

    Article  Google Scholar 

  11. Keyvani, A., Saremi, M., and Heydarzadeh Sohi, M., Oxidation resistance of YSZ-alumina composites compared to normal YSZ TBC coatings at 1100°C Original Research Article, J. Alloys Compd., 2011, vol. 509, no. 33, pp. 8370–8377.

    Article  Google Scholar 

  12. Keyvani Ahmad, Saremi Mohsen, Heydarzadeh Sohi Mahmoud, et al., Microstructural stability of nanostructured YSZ-alumina composite TBC compared to conventional YSZ coatings by means of oxidation and hot corrosion tests Original, J. Alloys Compd., 2014, vol. 600, pp. 151–158.

    Article  Google Scholar 

  13. Wang, X., Wu, R.T., and Atkinson, A., Characterisation of residual stress and interface degradation in TBCs by photo-luminescence piezo-spectroscopy, Surf. Coat. Technol., vol. 204, no. 15, pp. 2472–2482.

  14. Tolpygo, V.K. and Clarke, D.R., Morphological evolution of thermal barrier coatings induced by cyclic oxidation, Surf. Coat. Technol., 2003, vol. 163, no. 30, pp. 81–86.

    Article  Google Scholar 

  15. Wang, X. and Atkinson, A., Piezo-spectroscopic mapping of the thermally grown oxide in thermal barrier coatings, Mater. Sci. Eng., Ser. A, 2007, vol. 465, no. 1, pp. 49–58.

    Article  Google Scholar 

  16. Sohn, Y.H., Vaidyanathan, K., Ronski, M., et al., Thermal cycling of EB-PVD/MCrAlY thermal barrier coatings, II. Evolution of photo-stimulated luminescence, Surf. Coat. Technol., 2001, vol. 146, no. 9, pp. 102–109.

    Article  Google Scholar 

  17. Wen Mei, Jordan Eric, H., and Gell Maurice, Evolution of photo-stimulated luminescence of EB-PVD/(Ni, Pt)Al thermal barrier coatings, Mater. Sci. Eng., Ser. A, 2005, vol. 398, no. 1, pp. 99–107.

    Article  Google Scholar 

  18. Jayaraj, B., Desai, V.H., Lee, C.K., et al., Electrochemical impedance spectroscopy of porous ZrO2–8 wt % Y2O3 and thermally grown oxide on nickel aluminide, Mater. Sci. Eng., Ser. A, 2004, vol. 372, no. 1, pp. 278–286.

    Article  Google Scholar 

  19. Jayaraj, B., Vishweswaraiah, S., Desai, V.H., et al., Electrochemical impedance spectroscopy of thermal barrier coatings as a function of isothermal and cyclic thermal exposure, Surface and Coatings Technology, Surf. Coat. Technol., 2004, vols. 177–178, no. 1, pp. 140–151.

    Article  Google Scholar 

  20. Wu, N.Q., Ogawa, K., Chyu, M., et al., Failure detection of thermal barrier coatings using impedance spectroscopy, Thin. Solid. Films, 2004, vol. 457, no. 2, pp. 301–306.

    Article  Google Scholar 

  21. Anderson, P.S., Wang, X., and Xiao, P., Impedance spectroscopy study of plasma sprayed and EB-PVD thermal barrier coatings, Surf. Coat. Technol., 2004, vol. 185, no. 1, pp. 106–119.

    Article  Google Scholar 

  22. Byeon, J.W., Jayaraj, B., Vishweswaraiah, S., et al., Non-destructive evaluation of degradation in multi-layered thermal barrier coatings by electrochemical impedance spectroscopy, Mater. Sci. Eng., Ser. A, 2005, vol. 407, no. 1, pp. 213–225.

    Article  Google Scholar 

  23. Choudhury, T.A., Hosseinzadeh, N., and Berndt, C.C., Artificial Neural Network application for predicting inflight particle characteristics of an atmospheric plasma spray process, Surf. Coat. Technol., 2011, vol. 205, no. 21, pp. 4886–4895.

    Article  Google Scholar 

  24. Park, J.H., Kim, J.S., and Lee, K.H., Acoustic emission characteristics for diagnosis of TBC damaged by hightemperature thermal fatigue, J. Mater. Pro. Technol., 2007, vol. 187, pp. 537–541.

    Article  Google Scholar 

  25. Vavilov, V.P., Marinetti, S., Cernuschi, F., et al., Thermal nondestructive testing of thermal-barrier coatings of turbine buckets, Russ. J. Nondes. Test., 2005, vol. 41, no. 7, pp. 466–472.

    Article  Google Scholar 

  26. Cernuschi, F., Bison, P., and Moscatelli, A., Microstructural characterization of porous thermal barrier coatings by laser flash technique, Acta Mater., 2009, vol. 57, no. 12, pp. 3460–3471.

    Article  Google Scholar 

  27. Franke, B., Sohn, Y.H., Chen, X., et al., Monitoring damage evolution in thermal barrier coatings with thermal wave imaging, Surf. Coat. Technol., 2005, vol. 200, no. 5, pp. 1292–1297.

    Article  Google Scholar 

  28. Marinetti, S., Robba, D., Cernuschi, F., et al., Thermographic inspection of TBC coated gas turbine blades: Discrimination between coating over-thicknesses and adhesion defects, Infrared. Phys. Technol., 2007, vol. 49, no. 3, pp. 281–285.

    Article  Google Scholar 

  29. Cernuschi, F., Lorenzoni, L., Bianchi, P., et al., The effects of sample surface treatments on laser flash thermal diffusivity measurements, Infrared. Phys. Technol., 2002, vol. 43, no. 3, pp. 133–138.

    Article  Google Scholar 

  30. Cernuschi, F., Capelli, S., Bison, P., et al., Non-destructive thermographic monitoring of crack evolution of thermal barrier coating coupons during cyclic oxidation aging, Acta Mater., 2011, vol. 59, no. 16, pp. 6351–6361.

    Article  Google Scholar 

  31. Luikov, A.V., Heat and mass transfer with transpiration cooling, Int. J. Heat Mass Transfer., 1963, vol. 6, no. 7, pp. 559–570.

    Article  Google Scholar 

  32. Parker, W.J., Jenkins, R.J., Butler, C.P., et al., Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, J. Appl. Phys., 1961, vol. 321, pp. 1679–1684.

    Article  Google Scholar 

  33. Shepard, S.M., Lhota, J.R., Rubadeux, B.A., et al., Reconstruction and enhancement of active thermographic image sequences, Opt. Eng., 2003, vol. 42, pp. 1337–1342.

    Article  Google Scholar 

  34. Chaudhury, Z.A., Newaz, G.M., Nusier, S.Q., et al., Interfacial damage in EB-PVD thermal barrier coatings due to thermal cycling, Mater. Sci. Eng., Ser. A, 1997, vol. 231, no. 1, pp. 34–41.

    Article  Google Scholar 

  35. Klemens, P.G. and Gell, M., Thermal conductivity of thermal barrier coatings, Mater. Sci. Eng., Ser. A, 1998, vol. 245, no. 2, pp. 143–149.

    Article  Google Scholar 

  36. Shillington, E.A.G., and Clarke, D.R., Spalling failure of a thermal barrier coating associated with aluminum depletion in the bond-coat, Acta Mater., 1999, vol. 47, no. 4, pp. 1297–1305.

    Article  Google Scholar 

  37. Rabiei, A. and Evans, A.G., Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings, Acta Mater., 2000, vol. 48, no. 15, pp. 3963–3976.

    Article  Google Scholar 

  38. Sidhu, B.S. and Prakash, S., High-temperature oxidation behavior of NiCrAlY bond coats and stellite-6 plasma-sprayed coatings, Oxid. Met., 2005, vol. 63, no. 3, pp. 1098–1106.

    Google Scholar 

  39. Chen, W.R., Wu, X., Marple, B.R., et al., Oxidation and crack nucleation/growth in an air-plasma-sprayed thermal barrier coating with NiCrAlY bond coat, Surf. Coat. Technol., 2005, vol. 197, no. 1, pp. 109–115.

    Article  Google Scholar 

  40. Ajdelsztajn Leonardo, Picas Josep, A., Kim George, E., et al., Oxidation behavior of HVOF sprayed nanocrystalline NiCrAlY powder, Mater. Sci. Eng., Ser. A, 2002, vol. 338, no. 1, pp. 33–43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Wang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Wang, H., Wu, N. et al. Nondestructive testing of the fatigue properties of air plasma sprayed thermal barrier coatings by pulsed thermography1 . Russ J Nondestruct Test 51, 445–456 (2015). https://doi.org/10.1134/S1061830915070074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830915070074

Keywords

Navigation