Skip to main content
Log in

Two-temperature fractional Green–Naghdi of type III in magneto-thermo-viscoelasticity theory subjected to a moving heat source

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, we construct a mathematical model of two-temperature Green–Naghdi (III) magneto-thermo viscoelasticty theory based on the fractional order of heat transfer. Some essential theorems of coupled and generalized thermo-viscoelasticity can be easily obtained. The Laplace transform and state-space techniques are used to obtain the general solution for any set of boundary conditions. The resulting formulation is applied to the specific problem of a perfect electrically conducting viscoelastic half-space subjected to a moving heat source with constant velocity and ramp-type heating. The inverse transforms are obtained by using a numerical method based on Fourier expansion techniques. The effects of the heat source speed, the two-temperature parameter, Alfven velocity and the ramping time parameter on a polymethyl methacrylate (Plexiglas) material are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M A Biot J. Appl. Phys. 27 240 (1956)

  2. N Fox Int. J. Eng. Sci. 7 437 (1969)

  3. H W Lord and Y Shulman J. Mech. Phys. Solids 15 299 (1967)

    Article  ADS  Google Scholar 

  4. A Green and K Lindsay J. Elast. 21 (1972)

  5. D S Chandrasekharaiah Appl. Mech. Rev. 51 705 (1998)

  6. R B Hetnarski J. Therm. Stress. 22 451(1999)

  7. J Ignaczak and M Ostoja-starzeweski Oxford University Press, Oxford, UK (2009)

  8. H H Shereif J. Therm. Stress. 9 151 (1986)

  9. M A Ezzat and A S El-Karamany Int. J. Eng. Sci. 40 1275 (2002)

    Article  Google Scholar 

  10. S Sharma, K Sharma and R R Bhargava Mat. Phys. Mech. 17 93 (2013)

    Google Scholar 

  11. M I Othman and E M Abd-Elaziz Indian J Physics 93 475 (2019)

    Article  ADS  Google Scholar 

  12. K Sharma and P Kumar J. Therm. Stress. 36 94 (2013)

    Article  Google Scholar 

  13. P Lata, R Kumar and N Sharma Steel Compos. Struct. 22 567 (2016)

    Google Scholar 

  14. I A Abbas and R Kumar Steel Compos. Struct. 20 1103 (2016)

    Article  Google Scholar 

  15. A M Zenkour and I A Abbas Int. J. Mech. Sci. 84 54 (2014)

    Article  Google Scholar 

  16. A.E. Green and P.M. Naghdi, Proc R Soc Lond Ser A 432 171 (1991)

    Article  ADS  Google Scholar 

  17. A E Green and P M Naghdi J. Therm. Stress. 15 252(1992)

    Article  ADS  Google Scholar 

  18. A E Green and P M Naghdi J. Elast. 31 189 (1993)

    Article  Google Scholar 

  19. D S Chandrasekharaiah J. Therm. Stress. 19 267 (1996)

  20. S K Roychoudhuri J. Therm. Stress. 30 231 (2007)

  21. I A Abbas Mech. Based Des. Struct. Mach. 43 501 (2015)

  22. S Chirita and M Ciarletta Mech. Res.Commu. 37 271 (2010)

    Article  Google Scholar 

  23. M Ciarletta J. Therm. Stress. 22 581 (2009)

  24. J Ghazanfarian, Z Shomali and A Abbassi Int. J. Thermophys. 36 1416 (2015)

    Article  ADS  Google Scholar 

  25. S Sharma, K Sharma and R R Bhargava Mat. Phys. Mech. 16 144 (2013)

    Google Scholar 

  26. M I Othman and I A Abbas Int. J. Thermophys. 33 913 (2012)

    Article  ADS  Google Scholar 

  27. H H Sherief and W E Raslan J. Therm. Stress. 40 1461 (2017)

    Article  Google Scholar 

  28. Yu Rossikhin and M V Shitikova Appl. Mech. Rev. 50 15 (1967)

    Article  ADS  Google Scholar 

  29. R L Bagley and P J Torvik J. Rheol. 30 133 (1986)

    Article  ADS  Google Scholar 

  30. R S Lakes Viscoelastic Solids. CRC Press, Boca Raton, FL (1999)

  31. H H Sherief and M A El-Hagary Mech. Time-Dep. Mat. Online first (2019)

  32. M A Ezzat Int. J. Therm. Sci. 50 449 (2011)

  33. H H Sherief, A El-Said, A Abd El-Latief Int. J Solids Struct. 47 269 (2010)

    Article  Google Scholar 

  34. H H Sherief and W E Raslan Lat. Am. J. Solids Struct. 31 1596 (2016)

    Article  Google Scholar 

  35. I A Abbas J. Mag. Mag. Mat. 377 452 (2015)

  36. M A Ezzat, A S El-Karamany, A A El- Bary and M A Faiyk Comp. Rend. Mec. 341 553 (2013)

  37. M A Ezzat, A S El-Karamany and M A Faiyk Arch. Appli. Mech. 82 557 (2012)

    Google Scholar 

  38. M A Ezzat, A S El-Karamany and A A El-Bary Microsts. Tech. 24 951 (2018)

    Google Scholar 

  39. M H Hendy, M M Amin and M A Ezzat J. Therm. Stress. 42 1298 (2019)

    Article  Google Scholar 

  40. [41] P J Chen and M E Gurtin ZAMP 19 614 (1968)

    ADS  Google Scholar 

  41. W E Warren and P J Chen Acta Mech. 16 21 (1973)

    Article  Google Scholar 

  42. N Sharma, R Kumar and P Lata Mater. Phys. Mech. 22 107 (2015)

    Google Scholar 

  43. I A Abbas J. Mech. Sci. Techn. 28 4193 (2014)

  44. M A Ezzat and E S Awad J. Therm. Stress. 33 226 (2010)

    Article  Google Scholar 

  45. M A Ezzat and M Z Abd-Elaal J. Frank. Inst. 334 685 (1997)

    Article  Google Scholar 

  46. G Honig and U Hirdes J. Comput. Appl. Math. 10 113 (1984)

    Article  MathSciNet  Google Scholar 

  47. A S El-Karamany and M A Ezzat Appl. Math, Modell. 40 5643 (2014)

  48. H H Sherief and W E Raslan J. Therm. Stress. 39 326 (2016)

    Article  Google Scholar 

  49. M A Ezzat and A A El-Bary Micro. Sys. 24 4965 (2018)

    Google Scholar 

  50. A S El-Karamany and M A Ezzat Appl. Math, Modell. 39 2155 (2015)

  51. H H Sherief and E M Hussein Appl. Math. Compu 320 557 (2018)

    Google Scholar 

  52. M A Ezzat Mat. Sci. Eng. B 130 11 (2006)

  53. M A Ezzat Can. J. Phys. 86 1241 (2008)

Download references

Acknowledgements

The authors gratefully acknowledge the approval and the support of this research study by the Grant No. SCI-2017-1-8-F-7354 from the Deanship of Scientific Research in Northern Border University, Arar, KSA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy A. Ezzat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendy, M.H., El-Attar, S.I. & Ezzat, M.A. Two-temperature fractional Green–Naghdi of type III in magneto-thermo-viscoelasticity theory subjected to a moving heat source. Indian J Phys 95, 657–671 (2021). https://doi.org/10.1007/s12648-020-01719-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01719-1

Keywords

PACS Nos.

Navigation