Skip to main content
Log in

The Heat Conduction in Nanosized Structures

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Thermal transport cannot be well described by classical Fourier’s law in nanosized structures. A novel gradient theory is developed in such structures adopting the size effect of heat conduction. This is achieved by considering the second derivatives of temperature in the constitutive equation for the high-order heat flux in an advanced continuum model. The variational principle is applied to derive the governing equations. The general two-dimensional boundary-value problem for heat conduction is analyzed by the finite element method (FEM). A mixed FEM with two independent C0 continuous interpolations for temperature and temperature gradients is developed. The constraints between temperature and its gradients are performed by the collocation approach. Parametric studies are given to evaluate the influence of the internal size on the temperature distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Li, Z., He, Y., Lei, J., Guo, S., Liu, D., and Wang, L., A Standard Experimental Method for Determining the Material Length Scale Based on Modified Couple Stress Theory, Int. J. Mech. Sci., 2018, vol. 141, pp. 198–205. https://doi.org/10.1016/j.ijmecsci.2018.03.035

    Article  Google Scholar 

  2. Li, Z., He, Y., Zhang, B., Lei, J., Guo, S., and Liu, D., Experimental Investigation and Theoretical Modelling on Nonlinear Dynamics of Cantilevered Microbeams, Eur. J. Mech. A. Solids, 2019, vol. 78, p. 103834. https://doi.org/10.1016/j.euromechsol.2019.103834

    Article  ADS  MathSciNet  Google Scholar 

  3. Majumdar, A., Microscale Heat Conduction in Dielectric Thin Films, J. Heat Transfer., 1993, vol. 115, pp. 7–16. https://doi.org/10.1115/1.2910673

    Article  ADS  Google Scholar 

  4. Allen, P.B., Size Effects in Thermal Conduction by Phonons, Phys. Rev. B, 2014, vol. 90, p. 054301. https://doi.org/10.1103/PhysRevB.90.054301

    Article  ADS  Google Scholar 

  5. Challamel, N., Grazide, C., Picandet, V., Perrot, A., and Zhang, Y., A Nonlocal Fourier’s Law and Its Application to the Heat Conduction of One-Dimensional and Two-Dimensional Thermal Lattices, C. R. Mec., 2016, vol. 344, pp. 388–401. https://doi.org/10.1016/j.crme.2016.01.001

    Article  ADS  Google Scholar 

  6. Yu, Y.J., Tian, X.G., and Liu, R., Size-Dependent Generalized Thermoelasticity Using Eringen’s Nonlocal Model, Eur. J. Mech. A. Solids, 2015, vol. 51, pp. 96–106. https://doi.org/10.1016/j.euromechsol.2014.12.005

    Article  ADS  MathSciNet  Google Scholar 

  7. Sarkar, N., Thermoelastic Responses of a Finite Rod due to Nonlocal Heat Conduction, Acta Mech., 2020, vol. 231, pp. 947–955. https://doi.org/10.1007/s00707-019-02583-9

    Article  MathSciNet  Google Scholar 

  8. Filopoulos, S.P., Papathanasiou, T.K., Markolefas, S.I., and Tsamasphyros, G.J., Generalized Thermoelastic Models for Linear Elastic Materials with Microstructure. Part I: Enhanced Green–Lindsay Model, J. Therm. Stresses, 2014, vol. 37, pp. 624–641. https://doi.org/10.1080/01495739.2014.885325

    Article  Google Scholar 

  9. Filopoulos, S.P., Papathanasiou, T.K., Markolefas, S.I., and Tsamasphyros, G.J., Generalized Thermoelastic Models for Linear Elastic Materials with Microstructure. Part II: Enhanced Lord–Shulman Model, J. Therm. Stresses, 2014, vol. 37, pp. 642–659. https://doi.org/10.1080/01495739.2014.885327

    Article  Google Scholar 

  10. Lindsay, L., Katre, A., Cepellotti, A., and Mingo, N., Perspective on Ab Initio Phonon Thermal Transport, J. Appl. Phys., 2019, vol. 126, p. 050902. https://doi.org/10.1063/1.5108651

    Article  ADS  Google Scholar 

  11. Beardo, A., Calvo-Schwarzwalder, M., Camacho, J., Myers, T.G., Torres, P., Sendra, F.X., and Bafaluy, J., Hydrodynamic Heat Transport and Holey Silicon Thin Films, Phys. Rev. Appl., 2019, vol. 11, p. 034003. https://doi.org/10.1103/PhysRevApplied.11.034003

    Article  Google Scholar 

  12. Yu, Y.J., Tian, X.G., and Xiong, Q.L., Nonlocal Thermoelasticity Based on Nonlocal Heat Conduction and Nonlocal Elasticity, Eur. J. Mech. A. Solids, 2016, vol. 60, pp. 238–253. https://doi.org/10.1016/j.euromechsol.2016.08.004

    Article  ADS  MathSciNet  Google Scholar 

  13. Yu, Y.J. and Deng, Z.C., New Insights on Microscale Transient Thermoelastic Responses for Metals with Electron-Lattice Coupling Mechanism, Eur. J. Mech. A. Solids, 2020, vol. 80, p. 103887. https://doi.org/10.1016/j.euromechsol.2019.103887

    Article  ADS  MathSciNet  Google Scholar 

  14. Sladek, J., Sladek, V., Repka, M., and Pan, E., A Novel Gradient Theory for Thermoelectric Material Structures, Int. J. Solids Struct., 2020, vol. 206, pp. 292–303. https://doi.org/10.1016/j.ijsolstr.2020.09.023

    Article  Google Scholar 

  15. Lazar, M. and Polyzos, D., On Non-Singular Crack Fields in Helmholtz Type Enriched Elasticity Theories, Int. J. Solids Struct., 2015, vol. 62, pp. 1–7. https://doi.org/10.1016/j.ijsolstr.2014.01.002

    Article  Google Scholar 

  16. Sladek, J., Sladek, V., Stanak, P., Zhang, Ch., and Tan, C.L., Fracture Mechanics Analysis of Size-Dependent Piezoelectric Solids, Int. J. Solids Struct., 2017, vol. 113, pp. 1–9. https://doi.org/10.1016/j.ijsolstr.2016.08.011

    Article  Google Scholar 

  17. Sladek, J., Sladek, V., Repka, M., and Schmauder, S., Gradient Theory for Crack Problems in Quasicrystals, Eur. J. Mech. A. Solids, 2019, vol. 77, p. 103813. https://doi.org/10.1016/j.euromechsol.2019.103813

    Article  ADS  MathSciNet  Google Scholar 

  18. Bishay, P.L., Sladek, J., Sladek, V., and Atluri, S.N., Analysis of Functionally Graded Multiferric Composites Using Hybrid/Mixed Finite Elements and Node-Wise Material Properties, Comput. Mater. Continua, 2012, vol. 29, pp. 213–262. https://doi.org/10.3970/cmc.2012.029.213

    Article  Google Scholar 

  19. Dong, L. and Atluri, S.N., A Simple Procedure to Develop Efficient and Stable Hybrid/Mixed Elements, and Voronoi Cell Finite Elements for Macro- and Micromechanics, Comput. Mater. Continua, 2011, vol. 24, pp. 61–104. https://doi.org/10.3970/cmc.2011.024.061

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the support by the Slovak Science and Technology Assistance Agency registered under number APVV-18-0004 and VEGA-2/0061/20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sladek.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2021, Vol. 24, No. 5, pp. 122–129.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sladek, J., Sladek, V. & Repka, M. The Heat Conduction in Nanosized Structures. Phys Mesomech 24, 611–617 (2021). https://doi.org/10.1134/S102995992105012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102995992105012X

Keywords:

Navigation