Skip to main content
Log in

Structural and temporal features of high-rate deformation of metals

  • Mechanics
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

Dynamic yield stress values predicted within the structural–temporal approach based on the incubation time concept and those found from the empirical Johnson–Cook formula and its known modification are compared with the examples of steel, nickel, and an aluminum alloy subjected to high-rate plastic deformation. It is shown that the structural–temporal approach is an efficient and convenient tool for calculations in a much wider range of deformation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Johnson and W. H. Cook, Proc. VII Intern. Symp. on Ballistics (Hague, 1983), p. 541.

    Google Scholar 

  2. G. R. Johnson and W. H. Cook, Eng. Fract. Mech. 21 (1), 31 (1985).

    Article  Google Scholar 

  3. F. J. Zerilli and R. W. Armstrong, J. Appl. Phys. 61, 1816 (1987).

    Article  ADS  Google Scholar 

  4. D. J. Steinberg, S. G. Cochran, and M. W. Guinan, J. Appl. Phys. 51 (3), 1498 (1980).

    Article  ADS  Google Scholar 

  5. H. Couque, R. Boulanger, and F. Bornet, J. Phys. IV 134, 87 (2006).

    Google Scholar 

  6. A. A. Gruzdkov and Yu. V. Petrov, Dokl. Phys. 44 (2), 114 (1999).

    ADS  Google Scholar 

  7. A. A. Gruzdkov, Yu. V. Petrov, and V. I. Smirnov, Phys. Solid State 44 (11), 2080 (2002).

    Article  ADS  Google Scholar 

  8. Yu. V. Petrov and Y. V. Sitnikova, Tech. Phys. 50 (8), 1034 (2005).

    Article  Google Scholar 

  9. A. A. Gruzdkov, E. V. Sitnikova, N. F. Morozov, and Y. V. Petrov, Math. Mech. Solids 14 (1/2), 72 (2009).

    Article  MathSciNet  Google Scholar 

  10. Yu. V. Petrov and E. N. Borodin, Phys. Solid State 57 (2), 353 (2015).

    Article  ADS  Google Scholar 

  11. J. D. Campbell, Mater. Sci. Eng. 12, 3 (1973).

    Article  Google Scholar 

  12. J. D. Campbell, Acta Metall. 1, 706 (1953).

    Article  Google Scholar 

  13. E. Cadoni and D. Forni, EPJ Web Conf. 94, 01004 (2015).

    Article  Google Scholar 

  14. H. Couque, Philos. Trans. R. Soc. London A 372, 20130218 (2014).

    Article  ADS  Google Scholar 

  15. D.-N. Zhang, Q.-Q. Shangguan, C. J. Xie, and F. Liu, J. Alloys Compd. 619, 186 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Selyutina.

Additional information

Original Russian Text © N.S. Selyutina, Yu.V. Petrov, 2017, published in Doklady Akademii Nauk, 2017, Vol. 472, No. 6, pp. 666–669.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selyutina, N.S., Petrov, Y.V. Structural and temporal features of high-rate deformation of metals. Dokl. Phys. 62, 102–105 (2017). https://doi.org/10.1134/S1028335817020136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335817020136

Navigation