Skip to main content
Log in

Cold Crucible Induction Melting for Production of Murataite Matrices for Immobilization of Actinides

  • GEOECOLOGY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

Crystalline phases are promising materials (matrices) for isolating nuclear waste with long-lived radionuclides, actinides first of all. Melting in an induction-heated cold crucible was used to produce a potential matrix with the following nominal composition: 50 wt % TiO2, 10 wt % MnO, 10 wt % CaO, 5 wt % Al2O3, 5 wt % Fe2O3, 10 wt % ZrO2, and 10 wt % CeO2 (actinide simulator). The target murataite phase is the predominant phase in the sample; crichtonite and glass are present as well. The emergence of glass is due to contamination of the melt by the refractory coating of the crucible. As in other samples produced by melting, murataite is represented by zonal crystals, the center of which is enriched in heavy elements (Zr and Ce). Murataite accounts for up to 80% of simulated radioactive waste. Irradiation with a dose of 22 million Gray resulted in partial amorphization of crichtonite. According to the results of a dynamic test (single pass flow test, SPFT), the rate of Ce leaching (powder, water, 70°C) is 10–4–10–5 g/(m2 day).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Radioactive Waste Forms for the Future, W. Lutze and R. C. Ewing (Elsevier, Amsterdam, 1988).

  2. B. G. Ershov, A. A. Minaev, I. B. Popov, T. K. Yurik, D. G. Kuznetsov, V. V. Ivanov, S. I. Rovnyi, and V. I. Guzhavin, Vopr. Radiats. Bezop., No. 1, 13–22 (2005).

  3. P. P. Poluektov, L. P. Sukhanov, and Yu. I. Matyunin, Ross. Khim. Zh. 49 (4), 29–41 (2005).

    Google Scholar 

  4. S. V. Stefanovskii, A. G. Ptashkin, O. A. Knyazev, M. S. Zen’kovskaya, O. I. Stefanovskaya, G. A. Varlakova, O. A. Burlaka, S. V. Yudintsev, and B. S. Nikonov, Fiz. Khim. Obrab. Mater., No. 4, 18–25 (2008).

  5. J. P. Icenhower, D. M. Strachan, B. P. Mcgrail, R.  D.  Scheele, E. A. Rodriguez, J. L. Steele, and V. L. Legore, Am. Mineral. 91, 39–53 (2006).

    Article  Google Scholar 

  6. L. R. Blackburn, S. Sun, L. J. Gardner, E. R. Maddrell, M. C. Stennett, and N. C. Hyatt, J. Nucl. Mater. 535, 152137 (2020).

    Article  Google Scholar 

  7. N. P. Laverov, S. V. Yudintsev, S. V. Stefanovskii, B. I. Omel’yanenko, and B. S. Nikonov, Radiokhimiya 53 (3), 196–207 (2011).

    Google Scholar 

  8. S. V. Yudintsev, S. V. Stefanovsky, M. Yu. Kalenova, B. S. Nikonov, M. S. Nikol’skii, A. M. Koshcheev, and A. S. Shchepin, Radiochemistry 57 (3), 321–334 (2015).

    Article  Google Scholar 

  9. J. W. Amoroso, J. Marra, C. S. Dandeneau, K. Brinkman, Y. Xu, M. Tang, V. Maio, S. M. Webb, and W. K. S. Chiu, J. Nucl. Mater. 486, 283–297 (2017).

    Article  Google Scholar 

  10. S. Yudintsev, S. Stefanovsky, B. Nikonov, O. Stefanovsky, M. Nickolskii, and M. Skvortsov, J. Nucl. Mater. 517, 371–379 (2019).

    Article  Google Scholar 

  11. S. V. Yudintsev, S. S. Danilov, S. E. Vinokurov, O.  I.  Stefanovskaya, B. S. Nikonov, M. S. Nikol’sky, M. V. Skvortsov, and B. F. Myasoedov, Radiochemistry 62 (6), 744–752 (2020).

    Article  Google Scholar 

  12. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr. 32, 751–767 (1976).

    Google Scholar 

  13. S. Krivovichev, S. Yudintsev, A. Pakhomova, and S. Stefanovsky, in Proc. 14th Int. Congr. for Applied Mineralogy ICAM 2019, Ed. by S. Glagolev (SPEES, Springer, 2019), pp. 447–450.

  14. M. S. Nikol’skii and S. V. Yudintsev, Crystallogr. Rep. 66 (1), 130–142 (2021).

    Article  Google Scholar 

  15. G. R. Lumpkin, M. G. Blackford, and M. Colella, Am. Mineral. 98, 275–278 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to E.E. Ostashkina for irradiating the samples and conducting experiments on their leaching, and S.S. Danilov for his help in analyzing the composition of the solutions after the experiments. We are also grateful to the reviewer for comments that made it possible to clarify some issues and improve the text.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-12032) and financed in part under a government-funded research project of Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, (examination of ceramic samples by a scanning electron microscope).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Yudintsev.

Additional information

Translated by B. Shubik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudintsev, S.V., Stefanovskaya, O.I., Nikolsky, M.S. et al. Cold Crucible Induction Melting for Production of Murataite Matrices for Immobilization of Actinides. Dokl. Earth Sc. 498, 444–449 (2021). https://doi.org/10.1134/S1028334X21050202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X21050202

Keywords:

Navigation