Skip to main content
Log in

Modeling of the Dissipation Rate of Turbulent Kinetic Energy

  • GEOPHYSICS
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

We consider a relaxation equation for turbulence wavenumber in semi-empirical turbulence closures. It is shown that the well-known phenomenological equation for the dissipation rate of turbulent kinetic energy can be related to this relaxation equation as a close approximation of the latter for stably stratified quasi-stationary flows. The proposed approach makes possible clarification of turbulent closures in the boundary layers of the atmosphere and ocean by specifying the equilibrium states and relaxation relations consistent with the direct and large eddy simulation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. N. Kolmogorov, Izv. Akad. Nauk SSSR, Ser. Fiz. 6 (1–2), 56–68 (1942).

    Google Scholar 

  2. J. Cuxart, A. A. M. Holtslag, R. J. Beare, E. Bazile, A. Beljaars, et al., Boundary-Layer Meteorol. 118 (2), 273–303 (2006).

    Article  Google Scholar 

  3. G. Svensson, A. A. M. Holtslag, V. Kumar, T. Mauritsen, G. J. Steeneveld, et al., Boundary-Layer Meteorol. 140 (2), 177–206 (2011).

    Article  Google Scholar 

  4. H. Burchard, Applied Turbulence Modelling in Marine Waters (Springer-Verlag, Berlin, Heidelberg, 2002).

    Book  Google Scholar 

  5. V. N. Lykosov, Izv. Akad. Nauk, Fiz. Atmos. Okeana 28 (7), 695–704 (1992).

    Google Scholar 

  6. M. S. Mohamed and J. C. LaRue, J. Fluid Mech. 219, 195–214 (1990).

    Article  Google Scholar 

  7. R. Schiestel, Phys. Fluids 30 (3), 722–731 (1987).

    Article  Google Scholar 

  8. A. S. Monin and A. M. Obukhov, Tr. Geofiz. Inst., Akad. Nauk SSSR 24, 163–187 (1954).

    Google Scholar 

  9. A. V. Glazunov, Izv., Atmos. Oceanic Phys. 50 (2), 134–143 (2014).

    Article  Google Scholar 

  10. S. S. Zilitinkevich, I. Esau, N. Kleeorin, I. Rogachevskii, and R. D. Kouznetsov, Boundary-Layer Meteorol. 135 (3), 505–511 (2010).

    Article  Google Scholar 

  11. S. Zilitinkevich, O. Druzhinin, A. Glazunov, E. Kadantsev, E. Mortikov, et al., Atmos. Chem. Phys. 19, 2489–2496 (2019).

    Article  Google Scholar 

  12. E. V. Mortikov, A. V. Glazunov, and V. N. Lykosov, Russ. J. Numer. Anal. Math. Modell. 34 (2), 119–132 (2019).

    Article  Google Scholar 

  13. A. Glazunov, U. Rannik, V. Stepanenko, V. Lykosov, M. Auvinen, et al., Geosci. Model Dev. 9, 2925–2949 (2016).

    Article  Google Scholar 

  14. R. J. Beare, M. K. Macvean, A. A. M. Holtslag, J. Cuxart, I. Esau, et al., Boundary-Layer Meteorol. 118 (2), 247–272 (2006).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 17-17-01210. S.S. Zilitinkevich is grateful to the Finnish Science Foundation, Academy of Finland, for its support, project no. 314 798/799.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Mortikov.

Additional information

Translated by E. Morozov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortikov, E.V., Glazunov, A.V., Debolskiy, A.V. et al. Modeling of the Dissipation Rate of Turbulent Kinetic Energy. Dokl. Earth Sc. 489, 1440–1443 (2019). https://doi.org/10.1134/S1028334X19120067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X19120067

Navigation