Skip to main content
Log in

Сomposites with a Matrix Based on Niobium and Molybdenum Reinforced with Sapphire Fibers

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Single-crystal sapphire fibers are obtained by the Stepanov/edge-defined film-fed growth (EFG) method. The procedure for obtaining them is described. Mechanical testing of the fibers is carried out according to the presented scheme, and the dependences of the limiting deformation and strength of the fibers on the length are determined. The dependences are of the power-law type and decrease with the length of the fibers. The strength of the obtained fibers corresponds to the international standard and meets the conditions for their use as reinforcing fibers for high-temperature composite materials. From blanks containing layer-by-layer unidirectionally arranged sapphire fibers, niobium powder, and metal foils of molybdenum and aluminum, layered-fibrous composites are obtained by solid-phase diffusion welding under load. Using scanning electron microscopy with X-ray analysis, the structure of the composites is studied. It is found that, in addition to the initial components, it includes intermetallic compounds of niobium, molybdenum, and aluminum, as well as solid solutions of these metals formed during the technological process. As a result of mechanical testing of the composite samples, deformation curves of load–deformation dependences are obtained, which, together with the developed fracture surfaces, indicate the nonbrittle nature of the fracture of composites containing brittle components. The dependences of the strength of the composites on temperature in the range of 20–1400°C are obtained, which meet the requirements for high-temperature structural materials of this kind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Kelly and W. R. Tyson, J. Mech. Phys. Solids 13, 329 (1965). https://doi.org/10.1016/0022-5096(65)90035-9

    Article  CAS  Google Scholar 

  2. A. Kelli, Nauka—Proizvod., No. 2, 1 (2007).

  3. S. T. Mileiko, Nauka—Proizvod., No. 2, 10 (2007).

  4. M. I. Karpov, V. I. Vnukov, T. S. Stroganova, D. V. Prokhorov, I. S. Zheltyakova, B. A. Gnesin, V. M. Kiiko, and I. L. Svetlov, Bull. Russ. Acad. Sci.: Phys. 83, 1235 (2019). https://doi.org/10.3103/S1062873819100113

    Article  CAS  Google Scholar 

  5. Properties, Preparation, and Application of Refractory Compounds, Ed. by T. Ya. Kosolapova (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  6. S. T. Mileiko, Kompoz. Nanostrukt. 7 (4), 191 (2015).

    CAS  Google Scholar 

  7. A. V. Stepanov, The Future of Metalworking (Lenizdat, Leningrad, 1963) [in Russian].

    Google Scholar 

  8. H. E. LaBelle, Jr., B. Chalmers, and A. I. Mlavsky, J. Crystal Growth 13–14, 84 (1972). https://doi.org/10.1016/0022-0248(72)90067-X

    Article  Google Scholar 

  9. H. E. LaBelle, Jr. and A. I. Mlavsky, Mater. Res. Bull. 6, 571 (1971). https://doi.org/10.1016/0025-5408(71)90006-7

    Article  CAS  Google Scholar 

  10. V. N. Kurlov, D. O. Stryukov, and I. A. Shikunova, J. Phys.: Conf. Ser. 673, 012017 (2016). https://doi.org/10.1088/1742-6596/673/1/012017

    Article  CAS  Google Scholar 

  11. P. Shahinian, J. Am. Ceram. Soc. 54, 67 (1971). https://doi.org/10.1111/j.1151-2916.1971.tb12180.x

    Article  CAS  Google Scholar 

  12. J. T. A. Pollock, J. Mater. Sci. 7, 787 (1972). https://doi.org/10.1007/BF00549907

    Article  CAS  Google Scholar 

  13. V. N. Kurlov, ST. Mileiko, A. A. Kolchin, M. Yu. Starostin, V. M. Kiiko, Crystallogr. Rep. 47 (Suppl. 1), 53 (2002).

    Article  Google Scholar 

  14. J. J. Fitzgibbon and J. M. Collins, Proc. SPIE 3262, 135 (1998). https://doi.org/10.1117/12.309487

    Article  CAS  Google Scholar 

  15. V. M. Kiiko and S. T. Mileiko, Compos. Sci. Technol. 59, 1977 (1999). https://doi.org/10.1016/S0266-3538(99)00054-8

    Article  CAS  Google Scholar 

  16. S. Mileiko, in Recrystallization in Materials Processing, Ed. by V. Glebovsky (IntechOpen, London, 2015), p. 125. https://doi.org/10.5772/61024

  17. V. M. Kiiko and V. P. Korzhov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11, 1145 (2017). https://doi.org/10.1134/S1027451017060118

    Article  CAS  Google Scholar 

  18. State Diagrams of Binary Metal Systems, Vol. 1, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1996) [in Russian].

    Google Scholar 

  19. B. A. Grinberg and M. A. Ivanov, Intermetallics Ni 3 A1 and TiAl: Microstructure and Deformation Behavior (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2002) [in Russian]

    Google Scholar 

  20. M. R. Jackson, B. P. Bewlay, R. G. Rowe, D. W. Skelly, and H. A. Lipsitt, J. Met. 48, 39 (1996). https://doi.org/10.1007/BF03221361

    Article  CAS  Google Scholar 

  21. B. P. Bewlay, M. R. Jackson, J. C. Zhao, and P. R. Subramanian, Metall. Mater. Trans. A 34, 2043 (2003). https://doi.org/10.1007/s11661-003-0269-8

    Article  Google Scholar 

  22. I. I. Svetlov, Materialovedenie, No. 9, 29 (2010).

  23. I. I. Svetlov, Materialovedenie, No. 10, 18 (2010).

Download references

ACKNOWLEDGMENTS

We express our gratitude to S.A. Abashkin, D.G. Pizenin, D.V. Prokhorov, V.I. Orlov, and A.N. Nekrasov for their assistance in the experimental work.

Funding

The work was carried out with financial support of the Russian Foundation for Basic Research (project 20-03-00296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kiiko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiiko, V.M., Korzhov, V.P. & Kurlov, V.N. Сomposites with a Matrix Based on Niobium and Molybdenum Reinforced with Sapphire Fibers. J. Surf. Investig. 17, 978–983 (2023). https://doi.org/10.1134/S1027451023050063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023050063

Keywords:

Navigation