Skip to main content
Log in

Abstract

The development of modern technologies, including nanotechnology, is based on the application of methods for the diagnostics of objects used in technologies processes. For this purpose, most promising methods are those implemented using a scanning electron microscope. Moreover, one of the basic methods is the measurement of linear sizes of relief structures of micrometer and nanometer ranges used in microelectronics and nanoelectronics. The basis of operation of scanning electron microscopes is the secondary electron emission of a solid body. However, practically all known regularities of secondary electron emission have been obtained for surfaces, the relief of which was neglected. A review of theoretical and experimental materials of studying the secondary electron emission of solid bodies on surfaces without a relief is given. Practically all known regularities have been verified in experiments and have received their own physical explanation. However, the application of secondary electron emission in scanning electron microscopy, used in microelectronics, nanoelectronics and nanotechnology, requires knowledge of the regularities, which emerge on relief surfaces. The regularities that can be applied in a scanning electron microscope to measure the linear sizes of relief structures are demonstrated. A conclusion is drawn as to the necessity of studying the influence of the surface relief of a solid body on secondary electron emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. L. Reimer, Scanning Electron Microscopy: Physics of Image Formation Microanalysis (Springer, Berlin, 1998). https://doi.org/10.1007/978-3-540-38967-5

  2. J. I. Goldstein and H. Yakowitz, Practical Scanning Electron Microscopy: Electron and Ion Microprobe Analysis (Springer, Berlin, 1975).

  3. J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, and E., Lifshin, E., Scanning Electron Microscopy and X-Ray Microanalysis Plenum, New York, 1981).

  4. Microanalyse et microscopie électronique à balayage, Ed. by F. Maurice, L. Meny, and R. Tixier (Ed. Phys., Les Ulis, 1978).

  5. M. M. Krishtal, I. S. Yasnikov, V. I. Polunin, A. M. Filatov, and A. G. Ul’yanenkov, Scanning Electron Microscopy and X-Ray Spectral Microanalysis in Practical Examples (Tekhnosfera, Moscow, 2009) [in Russian].

    Google Scholar 

  6. W. Zhou and Z. L. Wang, Scanning Microscopy for Nanotechnology: Techniques and Applications (Springer Science+Business Media, New York, 2006).

  7. International Technology Roadmap for Semiconductors (Metrology, 2013).

  8. T. Hatsuzawa, K. Toyoda, Y. and Tanimura, Rev. Sci. Instrum. 61, 975 (1990).

    Article  CAS  Google Scholar 

  9. H. M. Marchman, J. E. Griffith, J. Z. Y. Guo, J. Frackoviak, and G. K. Celler, J. Vac. Sci. Technol., B 12, 3585 (1994).

    Article  CAS  Google Scholar 

  10. Yu. A. Novikov and A. V. Rakov, Measurement Techniques, 42, No. 1, 20 (1999).

  11. M. T. Postek and Vladar, A.E., in Handbook of Silicon Semiconductor Metrology, Ed. by A. C. Diebold (Marcel Dekker, New York, 2001), p. 295.

    Google Scholar 

  12. M. T. Postek, Proc. SPIE 4608, 84 (2002).

    Article  Google Scholar 

  13. M. Postek, Vestn. Tekh. Regul., No. 7, 8 (2007).

  14. V. Gavrilenko, Yu. Novikov, A. Rakov, and P. Todua, Nanoindustriya, No. 4, 36 (2009).

  15. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, P. and A. Todua, Proc. SPIE 7405, 740504 (2009). https://doi.org/10.1117/12.826164

    Article  Google Scholar 

  16. P. A. Todua, V. A. Bykov, Ch. P. Volk, E. S. Gornev, Zh. Zhelkobaev, L. M. Zykin, A. B. Ishanov, V. V. Kalendin, Yu. A. Novikov, Yu. V. Ozerin, Yu. I. Plotnikov, A. M. Prokhorov, A. V. Rakov, S. A. Saunin, and V. N. Chernyakov, Mikrosist. Tekh., No. 3, 25 (2004).

  17. V. P. Gavrilenko, V. A. Kalnov, Yu. A. Novikov, A. A. Orlikovsky, A. V. Rakov, P. A. Todua, K. A. Valiev, and E. N. Zhikharev, Proc. SPIE 7272, 727227 (2009). https://doi.org/10.1117/12.814062

    Article  Google Scholar 

  18. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, P. A. Todua, and Ch. P. Volk, Proc. SPIE 7272, 72720 (2009). https://doi.org/10.1117/12.813514

    Article  CAS  Google Scholar 

  19. Yu. A. Novikov, Russ. Microelectron. 46, 55 (2017). https://doi.org/10.1134/S1063739717010073

    Article  Google Scholar 

  20. Yu. A. Novikov and A. V. Rakov, Mechanisms of Secondary Electron Emission from a Relief Surface of Solids (Nauka, Fizmatlit, Moscow, 1998); (Proc. IOFAN, Vol. 55) [in Russian].

  21. I. M. Bronshtein and B. S. Fraiman, Secondary Electron Emission (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  22. A. Z. Shul’man and S. A. Fridrikhov, Secondary Emission Methods for Studying Solids (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  23. A. Modinos, Field, Thermionic and Secondary Electron Emission Spectroscopy (Springer, New York, 1984).

  24. V. L. Gerus, Physical Foundations of Cathode-Ray Devices (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  25. Yu. D. Kornyushkin, Poverkhn., No. 9, 27 (1992).

  26. I. R. Kanicheva and A. A. Pavlova, Fiz. Tverd. Tela 8, 1641 (1966).

    CAS  Google Scholar 

  27. M. P. Lorikyan, Z. D. Kovalov, and N. N. Trofimchuk, Radiotekh. Elektron. 14, 935 (1969).

    CAS  Google Scholar 

  28. V. G. Bushkevich and M. M. Butslov, Radiotekh. Elektron. 3, 355 (1958).

    Google Scholar 

  29. I. R. Kanicheva and V. A. Burtsev, Fiz. Tverd. Tela 1, 1250 (1959).

    CAS  Google Scholar 

  30. A. Ya. Vyatskii and V. V. Trunev, Radiotekh. Elektron. 12, 1636 (1967).

    Google Scholar 

  31. M. V. Gomoyunova and B. Z. Aliev, Fiz. Tverd. Tela 11, 3619 (1969).

    CAS  Google Scholar 

  32. A. R. Shul’man, V. V. Korablev, and Yu. A. Morozov, Fiz. Tverd. Tela 12, 666 (1970).

    Google Scholar 

  33. A. R. Shul’man, V. V. Korablev, and Yu. A. Morozov, Fiz. Tverd. Tela 12, 758 (1970).

    Google Scholar 

  34. Yu. A. Morozov and E. B. Osarkov, Fiz. Tverd. Tela 13, 2051 (1971).

    CAS  Google Scholar 

  35. I. M. Bronshtein and A. N. Brozdnichenko, Radiotekh. Elektron. 14, 1528 (1969).

    CAS  Google Scholar 

  36. A. F. Afonina, O. O. Vorob’eva, A. I. Klimin, and G. B. Stuchinskii, Radiotekh. Elektron. 14, 2237 (1969).

    CAS  Google Scholar 

  37. I. M. Bronshtein and A. I. Protsenko, Radiotekh. Elektron. 15, 805 (1970).

    CAS  Google Scholar 

  38. I. M. Bronshtein and A. N. Brozdnichenko, Radiotekh. Elektron. 15, 1721 (1970).

    CAS  Google Scholar 

  39. S. F. Rashkovskii, Radiotekh. Elektron. 3, 371 (1958).

    Google Scholar 

  40. II. M. Bronshtein and R. B. Segal’, Fiz. Tverd. Tela 1, 1247 (1959).

    Google Scholar 

  41. L. M. Rogalya, Radiotekh. Elektron. 12, 1680 (1967).

    CAS  Google Scholar 

  42. I. M. Bronshtein and R. B. Segal’, Radiotekh. Elektron. 5, 1741 (1960).

    Google Scholar 

  43. V. N. Lepeshinskaya, V. L. Borisov, and T. M. Perchanak, Radiotekh. Elektron. 5, 1636 (1960).

    CAS  Google Scholar 

  44. A. R. Shul’man, I. R. Zakirova, Yu. A. Morozov, and S. A. Fridrikhov, Radiotekh. Elektron. 3, 329 (1958).

    Google Scholar 

  45. S. A. Fridrikhov and A. R. Shul’man, Fiz. Tverd. Tela 1, 1259 (1959).

    CAS  Google Scholar 

  46. S. A. Fridrikhov and A. R. Shul’man, Fiz. Tverd. Tela 1, 1268 (1959).

    CAS  Google Scholar 

  47. I. E. Zorin, V. M. Kogan, and N. N. Abramova, Radiotekh. Elektron. 26, 889 (1981).

    CAS  Google Scholar 

  48. G. A. Harrower, Phys. Rev. 104, 52 (1956).

    Article  CAS  Google Scholar 

  49. I. M. Bronshtein and V. V. Roshchin, Zh. Tekh. Fiz. 28, 2200 (1958).

    CAS  Google Scholar 

  50. I. M. Bronshtein and V. V. Roshchin, Zh. Tekh. Fiz. 28, 2476 (1958).

    CAS  Google Scholar 

  51. A. R. Shul’man and D. A. Ganichev, Fiz. Tverd. Tela 4, 745 (1962).

    Google Scholar 

  52. A. R. Shul’man and D. A. Ganichev, Fiz. Tverd. Tela 2, 530 (1960).

    Google Scholar 

  53. I. V. Krylova, Poverkhn., No. 1, 5 (1988).

  54. S. A. Fridrikhov, Fiz. Tverd. Tela 2, 171 (1960).

    CAS  Google Scholar 

  55. S. A. Fridrikhov and S. N. Goryacheva, Izv. Akad. Nauk SSSR 22, 486 (1958).

    CAS  Google Scholar 

  56. V. S. Vavilov, V. F. Kiselev, and B. N. Mukashev, Defects in Silicon and on Its Surface (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  57. V. P. Kovalev, Secondary Electrons (Energoatomizdat, Moscow, 1987) [in Russian].

    Google Scholar 

  58. I. Brodie and J. J. Murray, The Physics of Microfabrication (Plenum, New York, 1982).

  59. Beta- and Gamma-Ray Spectroscopy, Ed. by K. Siegbahn (Interscience, New York, 1955).

  60. K. A. Valiev, The Physics of Submicron Lithography (Plenum Press, New York, 1992).

  61. Methods of Surface Analysis, Ed. by A. Czanderna (Elsevier, Amsterdam, 1975).

  62. Yu. A. Novikov, A. M. Prokhorov, and A. V. Rakov, Physics, Chemistry, and Mechanics of Surfaces, 9 (3), 325 (1995).

  63. Yu. A. Novikov and A. V. Rakov, Surface Investigation, 15 (8), 1177 (2000).

  64. R. W. Nosker, J. Appl. Phys. 40, 1872 (1969).

    Article  CAS  Google Scholar 

  65. H. A. Bethe, M. E. Rose, and H. I. Smith, Proc. Am. Philos. Soc. 78, 573 (1938).

    CAS  Google Scholar 

  66. A. F. Makhov, Fiz. Tverd. Tela 2, 2172 (1960).

    CAS  Google Scholar 

  67. K. A. Valiev, A. N. Kirillov, B. N. Kovtun, T. M. Makhviladze, and M. M. Mkrtchyan, Tr. Inst. Obshch. Fiz. Ross. Akad. Nauk 8, 5 (1987).

    Google Scholar 

  68. L. Reimer, Scanning Electron Microscopy, No. 2, 111 (1979).

    Google Scholar 

  69. S. M. Ermakov and G. A. Mikhailov, Course in Statistical Modeling (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  70. D. E. Newbury H. and Yakowitz, in Proc. Workshop Held at the NBS (NBS, Gaithersburg, 1976), p. 15.

  71. A. S. Kheifets, Journal of Experimental and Theoretical Physics, 62, No. 2, 260 (1985).

  72. W. Heitler, The Quantum Theory of Radiation (Claredon, Oxford, 1954).

  73. E. V. Shpol’skii, Atomic Physics, Vol. 1 (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  74. H. Niedrig and E.I. Rau, Nuclear Instruments and Methods in Physics Research (B) 142, 523 (1998).

  75. Yu. A. Novikov, Russ. Microelectron. 43, 361 (2014). https://doi.org/10.1134/S1063739714050047

    Article  CAS  Google Scholar 

  76. M. T. Postek, W. J. Keery, and N. V. Frederick, Rev. Sci. Instrum. 61, 1648 (1990).

    Article  Google Scholar 

  77. H. Kanter, Ann. Phys. 20, 144 (1957).

    Article  CAS  Google Scholar 

  78. O. Hachenberg and W. Brauer, Adv. Electron. Electron. Phys. 11, 413 (1959).

    Article  Google Scholar 

  79. V. L. Borisov, T. M. Perchanok, and V. N. Lepeshinskaya, Radiotekh. Elektron. 5, 1643 (1960).

    CAS  Google Scholar 

  80. V. M. Sotnikov, Poverkhn., No. 1, 59 (1988).

  81. B. Berestetskii, B., E. M. Lifshits, and L. P. Pitaevskii, Quantum Electrodynamics (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  82. A. A. Zhigarev and G. T. Shamaeva, Electron-Beam and Photoelectronic Devices (Vysshaya Shkola, Moscow, 1982) [in Russian].

    Google Scholar 

  83. A. V. Batushev, Electronic Devices (Vysshaya Shkola, Moscow, 1969) [in Russian].

    Google Scholar 

  84. Yu. A. Novikov, Physics, Chemistry, and Mechanics of Surfaces, 11 (10) 1077 (1995).

  85. G. I. Epifanov, Physical Foundations of Microelectronics (Sov. Radio, Moscow, 1971) [in Russian].

    Google Scholar 

  86. A. Van der Ziel, Phys. Rev. 92, 35 (1953).

    Article  CAS  Google Scholar 

  87. Yu. Ya. Tomashpol’skii, M. A. Sevost’yanov, N. V. Sadovskaya, and N. V. Kolganova, Soviet Physics-Technical Physics, 35 (6), 696 (1990).

  88. L. S. Kokhanchik, Zavod. Lab., No. 7, 21 (1994).

  89. G. V. Spivak, E. I. Rau, N. M. Karelin, and M. V. Nazarov, Mikroelektronika 7, 212 (1978).

    Google Scholar 

  90. V. G. Dyukov, Poverkhn., No. 11, 1 (1982).

  91. V. G. Dyukov, S. A. Nepiiko, and N. N. Sedov, Electron Microscopy of Local Potentials (Naukova Dumka, Kiev, 1991) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Novikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, Y.A. Modern Scanning Electron Microscopy. 1. Secondary Electron Emission. J. Surf. Investig. 17, 598–611 (2023). https://doi.org/10.1134/S1027451023030138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023030138

Keywords:

Navigation