Skip to main content
Log in

Abstract

A method is developed for determining threshold for the development of the instability of a gas discharge in a helium–neon ring laser, taking into account the distributed capacitance “positive column– grounded screen”. In the developed approach to the analysis of stability, the positive discharge of the column is replaced by an equivalent circuit, containing the series connection of negative dynamic resistance ρ and parallel RL circuits. An equivalent circuit can be designed by experimental studies of the linear response of a gas-discharge plasma to weak harmonic perturbations, presented in the form of frequency dependences of the complex resistance Z of the positive column. The calculation of the threshold of instability development in the electrical circuit of a bilateral discharge only on the basis of the experimentally recorded frequency dependence of the complex resistance of the positive column does not allow one to extend the quantitative analysis to conditions beyond the range of those in which the measurements are performed. To overcome this limitation, which hinders the search for the operating current, in which the development of instability is excluded for the entire temperature range of operation of helium–neon ring lasers, a model is developed that describes the positive column of the gas discharge. The boundary of the unstable state of the bilateral gas discharge in the space of parameters is found to be as follows: the resistance of ballast resistors, temperature, and circuit capacitance. The results obtained make it possible to maintain a bilateral DC discharge in a given range of temperature variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Yu. Yu. Kolbas, M. E. Grushin, and V. N. Gorshkov, Quantum Electron. 48, 283 (2018).

    Article  CAS  Google Scholar 

  2. E. A. Izmailov, S. E. Kukhtevich, V. V. Tikhomirov, D. V. Stafeev, and A. V. Fomichev, Girosk. Navig., No. 2, 89 (2015).

  3. Yu. Yu. Kolbas, M. E. Grushin, V. N. Gorshkov, Quantum Electron. 48, 283 (2018).

    Article  CAS  Google Scholar 

  4. V. L. Granovskii, Electric Current in Gases: Steady Current (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  5. Y. B. Golubovskii, V. O. Nekuchaev, and I. A. Porokhova, Electron Kinetics and Applications of Glow Discharges (Plenum, New York, 1998).

    Google Scholar 

  6. Kh. N. Dao and V. V. Klimakov, in Proc. Int. Sci. Tech. Conf. “I Modern Technologies in Science and Education” (Ryazan, 2017), p. 262.

  7. V. V. Klimakov, A. V. Molchanov, A. I. Ulitenko, and M. V. Chirkin, Vestn. Ryazan. Gos. Radiotekh. Univ., No. 39-2, 48 (2012).

  8. A. I. Ulitenko, V. V. Klimakov, A. V. Molchanov, and M. V. Chirkin, Radiotekhnika, No. 3, 171 (2012).

  9. A. V. Molchanov, D. A. Morozov, S. V. Ustinov, and M. V. Chirkin, Vestn. Ryazan. Gos. Radiotekh. Univ., No. 54-2, 115 (2015).

  10. A. V. Ermachikhin and V. G. Litvinov, Instrum. Exp. Tech. 61, 277 (2018). https://doi.org/10.1134/S0020441218020021

    Article  Google Scholar 

  11. Kh. N. Dao, V. V. Klimakov, A. V. Molchanov, and M. V. Chirkin, Vestn. Ryazan. Gos. Radiotekh. Univ., No. 59, 136 (2018). http://www.doi.org/10.21667/1995-4565-2017-59-1-136-144

  12. D. U. Allan, Girosk. Navig., No. 4, 3 (2015). http://www.doi.org/10.17285/0869-7035.2015.23.4.003-028

  13. A. A. Aviev, V. N. Enin, and I. V. Saneev, Nauka Obraz., No. 6, 145 (2016).

  14. A. G. Kuznetsov, A. V. Molchanov, M. V. Chirkin, and E. A. Izmailov, Quantum Electron. 45, 78 (2015).

    Article  CAS  Google Scholar 

  15. V. I. Vinogradov and A. V. Eletskii, Opt. Spektr. 37, 850 (1974).

    CAS  Google Scholar 

  16. V. I. Vinogradov and A. V. Eletskii, Opt. Spektr. 62, 51 (1987).

    CAS  Google Scholar 

  17. E. F. Polikovskii, A. V. Molchanov, and V. I. Kremer, Proc. 3rd Int. Symp. on Aerospace Instrumentation Technologies (St. Petersburg, 2004), p. 28.

  18. A. V. Molchanov, V. M. Suminov,and M. V. Chirkin, Aviakosm. Priborostr., No. 9, 12 (2004).

  19. F. Aronowitz, in Optical Gyros and Their Application (Paris, 1999), p. 3.

    Google Scholar 

  20. D. P. Luk’yanov, V. Ya. Raspopov, and Yu. V. Filatov, Applied Theory of Gyroscopes (Elektropribor, St. Petersburg, 2015) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Ustinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirkin, M.V., Ustinov, S.V., Mishin, V.Y. et al. On the Stability of a Bilateral Discharge in a Ring Laser. J. Surf. Investig. 17, 612–619 (2023). https://doi.org/10.1134/S1027451023030047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023030047

Keywords:

Navigation