Skip to main content
Log in

Study of the Structure of Hybrid Coatings on the Surface of Stainless Steel Obtained Using an Alternating Asymmetric Current

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The possibility of forming hybrid coatings based on cobalt and nickel oxides immobilized in a chitosan polymer matrix on the surface of AISI 304 stainless steel using the non-steady-state electrolysis method is shown. The study of the morphology and surface structure of the coatings developed is carried out using scanning electron microscopy. According to X-ray spectral microanalysis, the main elements of the hybrid coatings are O, C, Co, and Ni. The formation of polyelectrolyte complexes and the immobilization of metal oxides in a chitosan polymer matrix are proven by infrared (IR) spectroscopy. Studying the phase composition of the hybrid coatings developed is carried out using X-ray diffraction and transmission-electron-microscopy methods. Identification of the X-ray diffraction patterns is difficult because of the amorphous structure and high dispersion of the coating substance. Therefore, the structure and most probable main phases of the hybrid coatings developed are established using transmission electron microscopy. It is established that oxide compounds of the coating represent particle agglomerates. It is shown that the results of structural investigation of hybrid coatings obtained using different physical-chemical methods are correlated and complementary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. I. G. Casella, J. Electroanal. Chem. Interfacial Electrochem. 520, 119 (2002). https://doi.org/10.1016/S0022-0728(02)00642-3

    Article  CAS  Google Scholar 

  2. G. T. Anand, R. Nithiyavathi, R. Ramesh, et al., Surf. Interfaces 18, 100460 (2020). https://doi.org/10.1016/j.surfin.2020.100460

    Article  CAS  Google Scholar 

  3. M. Raeisi, H. Q. Alijani, M. Peydayesh, et al., Bioprocess Biosyst. Eng. 44, 1423 (2021). https://doi.org/10.1007/s00449-021-02518-6

    Article  CAS  Google Scholar 

  4. Y. Wang, X. Lu, N. Yuan, and J. Ding, J. Alloys Compd. 849, 156222 (2020). https://doi.org/10.1016/j.jallcom.2020.156222

    Article  CAS  Google Scholar 

  5. C. Zollfrank, K. Gutbrod, P. Wechsler, and J. P. Guggenbichler, Mater. Sci. Eng. C 32, 47 (2012). https://doi.org/10.1016/j.msec.2011.09.010

    Article  CAS  Google Scholar 

  6. A. Rufus, N. Sreeju, and P. Daizy, RSC Adv. 6, 94206 (2016). https://doi.org/10.1039/C6RA20240C

  7. P. Sharma, D. S. Rana, and U. Ahmad, Nanosci. Nanotechnol. Lett. 8, 1014 (2016). https://doi.org/10.1166/nnl.2016.2189

    Article  Google Scholar 

  8. J. S. Moodley, S. B. N. Krishna, K. Pillay, et al., Adv. Nat. Sci.: Nanosci. Nanotechnol. 9, 015011 (2018). https://doi.org/10.1088/2043-6254/aaabb2

    Article  CAS  Google Scholar 

  9. Y. G. Yuan, Q. L. Peng, and S. J. Gurunathan, Mol. Sci. 18, 569 (2017). https://doi.org/10.3390/ijms18030569

    Article  CAS  Google Scholar 

  10. A. S. H. Hameed, C. Karthikeyan, and A. P. Ahamed, Sci. Rep. 6, 24312 (2016). https://doi.org/10.1038/srep24312

    Article  CAS  Google Scholar 

  11. V. Saxena, P. Chandra, and L. M. Pandey, Appl. Nanosci. 8, 1925 (2018). https://doi.org/10.1007/s13204-018-0863-0

    Article  CAS  Google Scholar 

  12. W. Trujillo, J. Zarria, J. Pino, et al., Subtilis J. Phys.: Conf. Ser. 987, 012044 (2018). https://doi.org/10.1088/1742-6596/987/1/012044

    Article  CAS  Google Scholar 

  13. A. M. Davarpanah, A. Rahdar, M. A. Dastnae, et al., J. Mol. Struct. 1175, 445 (2019). https://doi.org/10.1016/j.molstruc.2018.07.092

    Article  CAS  Google Scholar 

  14. E. Brunet, J. L. Colon, and F. Clearfield, Tailored Organic-Inorganic Materials (Wiley, New York, 2015).

    Book  Google Scholar 

  15. N. Choudhary, Md. A. Islam, J. H. Kim, et al., Nano Today 19, 16 (2018). https://doi.org/10.1016/j.nantod.2018.02.007

    Article  CAS  Google Scholar 

  16. Y.-S. Park, H. Kim, B. Cho, et al., ACS Appl. Mater. Interfaces 8, 17489 (2016). https://doi.org/10.1021/acsami.6b01856

    Article  CAS  Google Scholar 

  17. J. D. Sosa, T. F. Bennett, K. J. Nelms, et al., Crystals 8, 325 (2018). https://doi.org/10.3390/cryst8080325

    Article  CAS  Google Scholar 

  18. A. J. Varma, S. V. Deshpande, and J. F. Kennedy, Carbohydr. Polym. 55, 77 (2004). https://doi.org/10.1016/j.carbpol.2003.08.005

    Article  CAS  Google Scholar 

  19. R. A. Raj, S. M. S. Alsaihi, and S. Devanesan, J. Met., No. 5, 460 (2017). https://doi.org/10.3390/ma10050460

  20. A. M. Amanulla, S. K. J. Shahina, R. Sundaram, et al., J. Photochem. Photobiol., B 183, 233 (2018). https://doi.org/10.1016/j.jphotobiol.2018.04.034

    Article  CAS  Google Scholar 

  21. A. Raja, S. Ashokkumar, R. P. Marthandam, et al., J. Photochem. Photobiol., B 181, 53 (2018). https://doi.org/10.1016/j.jphotobiol.2018.02.011

    Article  CAS  Google Scholar 

  22. D. Abizhanova and U. Abduvaliyeva, Orient. J. Chem. 35, 689 (2019). https://doi.org/10.13005/ojc/350225

    Article  CAS  Google Scholar 

  23. N. V. Usoltseva, V. V. Korobochkin, A. S. Dolinina, and A. M. Ustyugov, Key Eng. Mater. 712, 65 (2016). https://doi.org/10.4028/www.scientific.net/KEM.712.65

  24. M. V. Glebov, S. Yu. Kireev, and S. N. Kireeva, IOP Conf. Ser.: Mater. Sci. Eng. 537, 022010 (2019). https://doi.org/10.1088/1757-899X/537/2/022010

  25. Zh. I. Bespalova and A. V. Khramenkova, Nanosyst.: Phys. Chem. Math. 7, 433 (2016). https://doi.org/10.17586/2220-8054-2016-7-3-433-450

    Article  CAS  Google Scholar 

  26. A. V. Khramenkova, D. N. Ariskina, and E. A. Yatsenko, Chern. Met. 10, 39 (2020).

    Google Scholar 

  27. E. V. Sytina, T. H. Tenchurin, S. G. Rudyak, et al., Mol. Med. 6, 38 (2014).

    Google Scholar 

  28. Y. Liu, Z. Cai, L. Sheng, et al., Carbohydr. Polym. 212, 421 (2019). https://doi.org/101016/j.carbpol.2019.02.079

  29. L.-Q. Wu, A. P. Gadre, H. Yi, et al., Langmuir 18, 8620 (2002). https://doi.org/10.1021/la020381p

    Article  CAS  Google Scholar 

  30. V. D. Patake, T. T. Ghogare, A. D. Gulbake, and C. D. Lokhande, SN Appl. Sci. 1, 1063 (2019). https://doi.org/10.1007/s42452-019-1054-7

    Article  CAS  Google Scholar 

  31. L. I. Mirkin, Handbook of X-Ray Analysis of Polycrystals (Gos. Izd. Fiz.-Mat. Lit., Moscow, 1961) [in Russian].

    Google Scholar 

  32. A. A. Elabd, W. I. Zidan, M. M. Abo-Aly, et al., J. Environ. Radioact. 134, 99 (2014). https://doi.org/10.1016/j.jenvrad.2014.02.008

    Article  CAS  Google Scholar 

  33. T. B. Fideles, J. L. Santos, H. Tomás, et al., Open Access Libr. J. 5, 13 (2018). https://doi.org/10.4236/oalib.1104336

    Article  Google Scholar 

  34. D. Demir, F. Ofkeli, S. Ceylan, and N. B. Karagulle, J. Turk. Chem. Soc., Sect. A 3, 131 (2016). https://doi.org/10.18596/jotcsa.00634

    Article  CAS  Google Scholar 

  35. A. Pawlak and M. Mucha, Thermochim. Acta 396, 153 (2003). https://doi.org/10.1016/S0040-6031(02)00523-3

    Article  CAS  Google Scholar 

  36. S. Chattopadhyay, S. K. Dash, S. K. Mahapatra, et al., J. Biol. Inorg. Chem. 19, 399 (2014). https://doi.org/10.1007/s00775-013-1085-2

    Article  CAS  Google Scholar 

  37. J. R. Azevedo, R. H. Sizilio, M. B. Brito, et al., J. Therm. Anal. Calorim. 106, 685 (2011). https://doi.org/10.1007/s10973-011-1429-5

    Article  CAS  Google Scholar 

  38. D. R. A. Meza, M. I. S. Gastelum, S. P. Sicairos, et al., Rev. Cie. Tecnol. 2, 40 (2019). https://doi.org/10.37636/recit.v214044

    Article  Google Scholar 

  39. D. He, Y. Liu, T. Zhao, et al., J. Nanopart. Res. 10, 409 (2008). https://doi.org/10.1007/s11051-007-9265-z

    Article  CAS  Google Scholar 

  40. K. Maniammal, G. Madhu, and V. Biju, Nano-Struct. Nano-Objects 16, 266 (2018). https://doi.org/10.1016/j.nanoso.2018.07.007

    Article  CAS  Google Scholar 

  41. D. Zhang, J. Wang, and X. Pan, J. Hazard. Mater. 138, 589 (2006). https://doi.org/10.1016/j.jhazmat.2006/05/092

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Khramenkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khramenkova, A.V., Ariskina, D.N., Moshchenko, V.V. et al. Study of the Structure of Hybrid Coatings on the Surface of Stainless Steel Obtained Using an Alternating Asymmetric Current. J. Surf. Investig. 16, 682–686 (2022). https://doi.org/10.1134/S102745102205007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102205007X

Keywords:

Navigation