Skip to main content
Log in

Spontaneous Emission during the Channeling of Relativistic Electrons in Crystals with a Hexagonal Structure

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The interaction potentials of electrons with the basal and prismatic planes, as well as with the c and \(\left\langle {2\bar {1}\bar {1}0} \right\rangle \) axes in hexagonal close-packed crystals (in particular, in crystals of Be, Sc, Ti, Co, Zn, Y, Zr, Tc, Ru, Cd, and La) at a temperature of 300 K are calculated in the Molière approximation. For comparison, the potentials of electron interaction with the {100} planes and the 〈100〉 axes in cubic crystals of Li, Ca, V, Fe, Cu, Sr, Nb, Mo, Rh, Ag, and Ba with body-centered or face-centered lattices are calculated. The choice of these crystals is due to the fact that the atoms from which they are built are adjacent in the Periodic Table. Calculations show that potential wells, as a rule, are deeper in hexagonal crystals than in cubic ones, both in the planar and axial cases. For relativistic electrons with the Lorentz factor γ = 20, when solving the corresponding Sturm–Liouville problems, the energy levels of transverse motion and the corresponding wave functions are found numerically. The spectra of the spontaneously channeling radiation are also numerically calculated in the dipole approximation for a dispersion-free electron beam moving at zero angle with respect to the corresponding crystallographic plane and axes. It is shown that the frequencies and amplitudes of the spectral peaks, as well as the total intensities of these spectra in crystals with a hexagonal structure, are more efficient for practical use than similar characteristics in cubic crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. L. Swent, R. H. Pantell, H. Park, et al., Phys. Rev. B 29, 52 (1984).

    Article  CAS  Google Scholar 

  2. B. L. Berman, J. O. Kephart, S. Datz, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 119, 71 (1996).

    CAS  Google Scholar 

  3. K. B. Korotchenko, Yu. L. Pivovarov, and N. A. Tukhfatullin, Nucl. Instrum. Methods Phys. Res., Sect. B 266, 3753 (2008). https://doi.org/10.1016/j.nimb.2008.03.203

    Article  CAS  Google Scholar 

  4. A. S. Gevorkyan, K. B. Oganesyan, E. A. Ayryan, and Yu. V. Rostovtsev, arXiv:1701.07637 (2017).

  5. E. A. Ayryan, A. S. Gevorkyan, M. Hnatic, et al., arXiv:1705.0993 (2020).

  6. N. V. Maksyuta, V. I. Vysotskii, and S. V. Efimenko, J. Phys.: Conf. Ser. 732, 012023 (2016). https://doi.org/10.1088/1742-6596/732/1/012023

    Article  CAS  Google Scholar 

  7. N. V. Maksyuta, V. I. Vysotskii, S. V. Efimenko, and Yu. A. Slinchenko, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13, 1296 (2019). https://doi.org/10.1134/S1027451019060417

    Article  CAS  Google Scholar 

  8. N. V. Maksyuta, V. I. Vysotskii, and S. V. Efimenko, Nucl. Instrum. Methods Phys. Res., Sect. B 355, 90 (2015). https://doi.org/10.1016/j.nimb.2015.02.010

    Article  CAS  Google Scholar 

  9. N. V. Maksyuta, V. I. Vysotskii, S. V. Efimenko, and Yu. A. Slinchenko, J. Instrum. 13, C04010 (2018). https://doi.org/10.1088/1748-0221/13/04/C04010

    Article  Google Scholar 

  10. N. V. Maksyuta, V. I. Vysotskii, S. V. Efimenko, and Yu. A. Slinchenko, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 15, 1109 (2021). https://doi.org/10.1134/S1027451021050347

    Article  CAS  Google Scholar 

  11. N. V. Maksyuta, V. I. Vysotskii, S. V. Efimenko, and Yu. A. Slinchenko, Vopr. At. Nauki Tekh., No. 3, 133 (2021). https://doi.org/10.46813/2021-133-019

  12. N. V. Maksyuta, V. I. Vysotskii, and S. V. Efimenko, in Proc. 50th Int. Tulinov Conference on Physics of Interaction of Charged Particles with Crystals (Univ. Kniga, Moscow, 2021), p. 62.

  13. N. W. Aschcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976; Vol. 1, Mir, Moscow, 1979).

  14. T. A. Bobrova and L. I. Ognev, Preprint no. IAE-4810/11 (Inst. At. Energy, Moscow, 1989).

    Google Scholar 

  15. W. Wagner, B. Azadegar, L. Sh. Grigoryan, and J. Pawelke, Europhys. Lett. 78, 56004 (2007). https://doi.org/10.1209/0295-5075/78/56004

    Article  Google Scholar 

  16. V. R. Biraz, V. P. Levchenko, and A. A. Povzner, Structure and Physical Properties of Crystals (Ural. Gos. Univ., Yekaterinburg, 2009) [in Russian].

    Google Scholar 

  17. V. A. Bazylev and N. K. Zhevago, Radiation of Fast Particles in Matter and in External Fields (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  18. N. P. Kalashnikov, Coherent Interaction of Charged Particles in Single Crystals (Atomizdat, Moscow, 1981) [in Russian].

    Google Scholar 

  19. Y.-H. Ohtsuki, Charged Beam Interaction with Solids (Taylor and Francis, London, 1983; Mir, Moscow, 1985).

  20. J. U. Andersen, E. Bonderup, E. Laegsgaard, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 194, 209 (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Maksyuta.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksyuta, N.V., Vysotskii, V.I. & Efimenko, S.V. Spontaneous Emission during the Channeling of Relativistic Electrons in Crystals with a Hexagonal Structure. J. Surf. Investig. 16, 312–319 (2022). https://doi.org/10.1134/S1027451022030272

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022030272

Keywords:

Navigation