Skip to main content
Log in

Resonant generation of electromagnetic modes in nonlinear electrodynamics: quantum perturbative approach

  • Regular Article - Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The paper studies resonant generation of higher-order harmonics in a closed cavity in Euler-Heisenberg electrodynamics from the point of view of pure quantum field theory. We consider quantum states of the electromagnetic field in a rectangular cavity with conducting boundary conditions and calculate the cross section for the merging of three quanta of cavity modes into a single one (\(3 \rightarrow 1\) process) as well as the scattering of two cavity mode quanta (\(2 \rightarrow 2\) process). We show that the amplitude of the merging process vanishes for a cavity with an arbitrary aspect ratio and provide an explanation based on plane wave decomposition for cavity modes. Contrary, the scattering amplitude is nonzero for specific cavity aspect ratio. This \(2 \rightarrow 2\) scattering is a crucial elementary process for the generation of a quantum of a high-order harmonics with frequency \(2\omega _1 - \omega _2\) in an interaction of two coherent states of cavity modes with frequencies \(\omega _1\) and \(\omega _2\). For this process, we calculate the mean number of quanta in the final state in a model with dissipation, which supports the previous result of resonant higher-order harmonics generation in an effective field theory approach (Kopchinskii and Satunin in Phys Rev A 105:013508, 2022).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no special associated data since the article is pure theoretical. Details of the calculations are given in Appendices A and B.]

Notes

  1. The idea was proposed in [35].

  2. Natural system of units \(\hbar =c=1\) is assumed.

  3. Here, n is a single integer in case of a single closed dimension, and a set of integers in case of more closed dimensions.

  4. Both the third harmonics generation (\(n'=n, p'=p, q'=q\)) and the generation for a mode of combined frequency \(2\omega _1 + \omega _2\) are considered.

  5. In general, one should take into account many-particle states of the signal mode as well.

References

  1. I. Kopchinskii, P. Satunin, Resonant generation of electromagnetic modes in nonlinear electrodynamics: classical approach. Phys. Rev. A 105, 013508 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Euler, B. Kockel, The scattering of light by light in Dirac’s theory. Naturwiss. 23(15), 246–247 (1935)

    Article  ADS  Google Scholar 

  3. W. Heisenberg, H. Euler, Consequences of Dirac’s theory of positrons. Z. Phys. 98(11–12), 714–732 (1936)

    Article  ADS  Google Scholar 

  4. A.A. Anselm, Axion \(\leftrightarrow \) photon oscillations in a steady magnetic field. (In Russian). Yad. Fiz. 42, 1480–1483 (1985)

    Google Scholar 

  5. L. Maiani, R. Petronzio, E. Zavattini, Effects of nearly massless, spin zero particles on light propagation in a magnetic field. Phys. Lett. B 175, 359–363 (1986)

    Article  ADS  Google Scholar 

  6. S. Evans, J. Rafelski, Virtual axion-like particle complement to Euler-Heisenberg-Schwinger action. Phys. Lett. B 791, 331–334 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. G.V. Dunne, The Heisenberg-Euler effective action: 75 years on. Int. J. Mod. Phys. A 27, 1260004 (2012)

    Article  ADS  Google Scholar 

  8. W. Dittrich, H. Gies, Springer Tracts in Modern Physics, vol. 166 (Springer, Berlin, Heidelberg, 2000)

    Google Scholar 

  9. A. Kuznetsov, N. Mikheev, Springer Tracts in Modern Physics, vol. 252 (Springer, Berlin, Heidelberg, 2013)

    Google Scholar 

  10. A. Fedotov, A. Ilderton, F. Karbstein, B. King, D. Seipt, H. Taya, G. Torgrimsson, Advances in QED with intense background fields. Phys. Rept. 1010, 1–138 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  11. R. Baier, P. Breitenlohner, Photon propagation in external fields. Acta Phys. Austriaca 25, 212–223 (1967)

    Google Scholar 

  12. Z. Bialynicka-Birula, I. Bialynicki-Birula, Nonlinear effects in Quantum Electrodynamics. Photon propagation and photon splitting in an external field. Phys. Rev. D 2, 2341–2345 (1970)

    Article  ADS  Google Scholar 

  13. N.N. Rozanov, Four-wave interactions of intense radiation in vacuum. JETP 76, 991 (1993)

    ADS  Google Scholar 

  14. ELI. https://eli-laser.eu/

  15. CoReLS. https://corels.ibs.re.kr/

  16. E. Lundström, G. Brodin, J. Lundin, M. Marklund, R. Bingham, J. Collier, J.T. Mendonça, P. Norreys, Using high-power lasers for detection of elastic photon-photon scattering. Phys. Rev. Lett. 96, 083602 (2006)

    Article  ADS  Google Scholar 

  17. H. Gies, F. Karbstein, C. Kohlfürst, N. Seegert, Photon-photon scattering at the high-intensity frontier. Phys. Rev. D 97, 076002 (2018)

    Article  ADS  Google Scholar 

  18. B. King, H. Hu, B. Shen, Three-pulse photon-photon scattering. Phys. Rev. A 98, 023817 (2018)

    Article  ADS  Google Scholar 

  19. A.M. Fedotov, N.B. Narozhny, Generation of harmonics by a focused laser beam in vacuum. Phys. Lett. A 362, 1–5 (2007)

    Article  ADS  Google Scholar 

  20. P.V. Sasorov, F. Pegoraro, T.Z. Esirkepov, S.V. Bulanov, Generation of high order harmonics in Heisenberg-Euler electrodynamics. New J. Phys. 23(10), 105003 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  21. C. Sundqvist, F. Karbstein, Two-beam laser photon merging. Phys. Rev. D 108(5), 056028 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Harmonic generation from laser-driven vacuum. Phys. Rev. D 72, 085005 (2005)

    Article  ADS  Google Scholar 

  23. F. Karbstein, R. Shaisultanov, Stimulated photon emission from the vacuum. Phys. Rev. D 91(11), 113002 (2015)

    Article  ADS  Google Scholar 

  24. H. Gies, F. Karbstein, C. Kohlfürst, All-optical signatures of Strong-Field QED in the vacuum emission picture. Phys. Rev. D 97(3), 036022 (2018)

    Article  ADS  Google Scholar 

  25. I.A. Aleksandrov, G. Plunien, V.M. Shabaev, Photon emission in strong fields beyond the locally-constant field approximation. Phys. Rev. D 100(11), 116003 (2019)

    Article  ADS  Google Scholar 

  26. I.A. Aleksandrov, A.D. Panferov, S.A. Smolyansky, Radiation signal accompanying the Schwinger effect. Phys. Rev. A 103(5), 053107 (2021)

  27. I.A. Aleksandrov, A. Di Piazza, G. Plunien, V.M. Shabaev, Stimulated vacuum emission and photon absorption in strong electromagnetic fields. Phys. Rev. D 105(11), 116005 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  28. G. Brodin, M. Marklund, L. Stenflo, Proposal for detection of QED vacuum nonlinearities in Maxwell’s equations by the use of waveguides. Phys. Rev. Lett. 87, 171801 (2001)

  29. D. Eriksson, G. Brodin, M. Marklund, L. Stenflo, A Possibility to measure elastic photon-photon scattering in vacuum. Phys. Rev. A 70, 013808 (2004)

  30. Z. Bogorad, A. Hook, Y. Kahn, Y. Soreq, Probing axionlike particles and the axiverse with superconducting radio-frequency cavities. Phys. Rev. Lett. 123(2), 021801 (2019)

    Article  ADS  Google Scholar 

  31. Y. Kahn, B. Giaccone, A. Lunin, A. Netepenko, R. Pilipenko, M. Wentzel, Searching for axions and light-by-light scattering with superconducting RF cavities. Proc. SPIE Int. Soc. Opt. Eng. 12016, 29 (2022)

    Google Scholar 

  32. B. Giaccone, et al., Design of axion and axion dark matter searches based on ultra high Q SRF cavities. 7 (2022). arXiv preprint, arXiv:2207.11346

  33. SQMS. https://sqmscenter.fnal.gov/

  34. K. Shibata, Intrinsic resonant enhancement of light by nonlinear vacuum. Eur. Phys. J. D 74(10), 215 (2020)

    Article  ADS  Google Scholar 

  35. I. Kopchinskii, P. Satunin, Resonant generation of high-order harmonics in nonlinear electrodynamics. Phys. Part. Nucl. Lett. 20(3), 447–451 (2023)

    Article  Google Scholar 

  36. S. Hacian, R. Jauregui, F. Soto, C. Villarreal, Spectrum of electromagnetic fluctuations in the Casimir effect. J. Phys. A 23, 2401–2412 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  37. S. Hacyan, R. Jauregui, C. Villarreal, Spectrum of quantum electromagnetic fluctuations in rectangular cavities. Phys. Rev. A 47, 4204–4211 (1993)

    Article  ADS  Google Scholar 

  38. S. Chenarani, A. Shirzad, Quantization in finite volumes using symplectic quantization programm. 11 (2013). arXiv preprint, arXiv:1311.0361

  39. D. Hill, Electromagnetic fields in cavities: deterministic and statistical theories. Antennas Propag. Mag., IEEE 56, 306–306 (2014)

    Article  Google Scholar 

  40. M.D. Schwartz, Cambridge University Press, 3 (2014)

  41. H. Padamsee, Calculations for breakdown induced by “large defects’’ in superconducting niobium cavities. IEEE Trans. Magn. 19(3), 1322–1325 (1983)

    Article  ADS  Google Scholar 

  42. D.A. Trunin, Enhancement of particle creation in nonlinear resonant cavities. Phys. Rev. D 107(6), 065004 (2023)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Maxim Fitkevich, Dmitry Kirpichnikov, Dmitry Levkov, Valery Rubakov, Alexey Rubtsov and Dmitry Salnikov for helpful discussions. The work is supported by RSF grant 21-72-10151.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper

Corresponding author

Correspondence to Petr Satunin.

Appendices

Elements of calculation of the matrix element for the \(3 \rightarrow 1\) merging process

In this Appendix, we provide more details for the merging matrix element calculation (12), whose expansion into the components of electromagnetic field strength operators has the following form,

$$\begin{aligned} \langle f|\textsf{S} |i\rangle&= 4i\kappa S \int \limits _{-\infty }^{+\infty }\textrm{d}t \int \limits _0^{L_x}\textrm{d}x\langle a^-_{l,3n} {:}{\textbf {E}} ^4 - 2{\textbf {B}} ^2 {\textbf {E}} ^2 + {\textbf {B}} ^4 \nonumber \\ {}&\quad + 4\beta ({\textbf {B}} {\textbf {E}} )^2{:} (a^+_{i,n})^2 a^+_{j,n}\rangle {0} \nonumber \\&= \langle {\textbf {E}} ^4\rangle - 2\langle {\textbf {B}} ^2{\textbf {E}} ^2\rangle + \langle {\textbf {B}} ^4\rangle + 4\beta \langle ({\textbf {B}} {\textbf {E}} )^2\rangle \nonumber \\&= \left\{ \langle E_y^4\rangle + 2\langle E_y^2E_z^2\rangle + \langle E_z^4\rangle \right\} ~\nonumber \\&\quad -~ 2\left\{ \langle B_y^2 E_y^2\rangle + \langle B_y^2 E_z^2\rangle + \langle B_z^2 E_y^2\rangle + \langle B_z^2 E_z^2\rangle \right\} \nonumber \\&\quad +~ \left\{ \langle B_y^4\rangle + 2\langle B_y^2B_z^2\rangle + \langle B_z^4\rangle \right\} ~\nonumber \\&\quad +~ 4\beta \left\{ \langle B_y^2 E_y^2\rangle + 2\langle B_y E_y B_z E_z\rangle + \langle B_z^2 E_z^2\rangle \right\} . \end{aligned}$$
(34)

Here, the brackets for the field strength operators are defined in the first line of (34). In total, 13 terms appear in Eq. (34). Let us present an evaluation for one of them:

$$\begin{aligned} \langle E_y^4\rangle&= 4i\kappa S \int \limits _{-\infty }^{+\infty }\textrm{d}t \int \limits _0^{L_x}\textrm{d}x {\langle a^-_{l,3n} \,{:} E_y E_y E_y E_y{:}\, a^+_{i,n} a^+_{i,n} a^+_{j,n}\rangle {0}} \\&= 4i\kappa S \int \limits _{-\infty }^{+\infty }\textrm{d}t \int \limits _0^{L_x}\textrm{d}x \,4!\, \left( +i\delta _{ly} \sqrt{\frac{\omega _{3n}}{V}} \sin (k_{3n}x) \, e^{+i\omega _{3n}t}\right) \\&\quad \times ~ \left( -i\delta _{iy} \sqrt{\frac{\omega _n}{V}} \sin (k_nx) \, e^{-i\omega _nt}\right) ^2 \nonumber \\&\quad \left( -i\delta _{jy} \sqrt{\frac{\omega _n}{V}} \sin (k_nx) \, e^{-i\omega _nt}\right) \\&= 4i\kappa S \,4!\, \delta _{iy}\delta _{jy}\delta _{ly} \, i(-i)^3 \, \sqrt{\frac{\omega _{3n}\omega _n^3}{V^4}}\\&\quad \int \limits _{-\infty }^{+\infty } e^{i(\omega _{3n}-3\omega _n)t} \textrm{d}t \int \limits _0^{L_x}\sin (k_{3n}x)\sin ^3(k_nx)\textrm{d}x \\&= 2\pi \delta (0) \, \frac{12\sqrt{3}i\pi ^2 n^2\kappa }{L_x^3 S} \, \delta _{iy}\delta _{jy}\delta _{ly}. \end{aligned}$$

Here, 4! is a combinatorial factor arising due to the identity of four \(E_y\) operators. At the last step we use \(\omega _n=k_n=\frac{\pi n}{L_x}\) and the similar relation for the 3n subscript.

Details of the matrix element \(2 \rightarrow 2\) calculation

Let us present the calculation for the terms of the matrix element (19) in more detail. The first term \(\langle ({\textbf {E}} {\textbf {E}} )^2\rangle \) reads,

$$\begin{aligned}&\langle ({\textbf {E}} {\textbf {E}} )^2\rangle : \int \textrm{d}^3\textrm{x} \langle 0|\tfrac{1}{\sqrt{2}}a^{\text {TE}}_{110}a^{\text {TE}}_{110}\,{:}{\textbf { (EE)(EE)}} {:}\,a^{\text {TM}+}_{110}a^{\text {TM}+}_{130}|0\rangle \nonumber \\&\quad =(+i)^2(-i)^2 \frac{\sqrt{\omega _{130}\omega _{011}^2\omega _{110}}}{\sqrt{2}\sqrt{2^4V^4}}\times \nonumber \\&\qquad \times \int \textrm{d}^3\textrm{x} \,8\big [\underbrace{({\varvec{\mathcal {A}}}^\text {TM}_{130}{\varvec{\mathcal {A}}}^\text {TM}_{110}) ({\varvec{\mathcal {A}}}^\text {TE}_{011}{\varvec{\mathcal {A}}}^\text {TE}_{011})}_{\int = -V/2} ~\nonumber \\&\qquad +~ 2 \underbrace{({\varvec{\mathcal {A}}}^\text {TM}_{130}{\varvec{\mathcal {A}}}^\text {TE}_{011}) ({\varvec{\mathcal {A}}}^\text {TM}_{110}{\varvec{\mathcal {A}}}^\text {TE}_{011})}_{\int = 0}\big ] = \frac{-\sqrt{\omega _{130}\omega _{011}^2\omega _{110}}}{\sqrt{2}V}. \end{aligned}$$
(35)

Here, 8 and 2 are combinatorial coefficients, for shortness we indicate the result of integration with underbraces. Thus, the second term in (35) vanishes.

Analogically, the following term \(\langle ({\textbf {B}} {\textbf {B}} )^2\rangle \) reads,

$$\begin{aligned}&\langle ({\textbf {B}} {\textbf {B}} )^2\rangle : \int \textrm{d}^3\textrm{x} \langle 0|\tfrac{1}{\sqrt{2}}a^{\text {TE}}_{110}a^{\text {TE}}_{110}\,{:}{\textbf { (BB)(BB)}} {:}\,a^{\text {TM}+}_{110}a^{\text {TM}+}_{130}|0\rangle \nonumber \\&\quad =(+i)^2(-i)^2 \frac{1}{\sqrt{2}\sqrt{2^4V^4}\sqrt{\omega _{130}\omega _{011}^2\omega _{110}}}\nonumber \\&\qquad \times \int \textrm{d}^3\textrm{x} \,8\big [\underbrace{({\textrm{rot}} {\varvec{\mathcal {A}}}^\text {TM}_{130}{\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TM}_{110}) ({\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TE}_{011}{\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TE}_{011})}_{\int = V/2\cdot \pi ^4(L_{x}^{-2} + 3 L_{y}^{-2}) (L_{y}^{-2} - L_{z}^{-2})} ~\nonumber \\&\qquad +~ 2 \underbrace{({\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TM}_{130}{\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TE}_{011}) ({\textrm{rot}} {\varvec{\mathcal {A}}}^\text {TM}_{110}{\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TE}_{011})}_{\int = -V/2 \cdot \pi ^4 \,L_{x}^{-2} L_{z}^{-2}}\big ] \nonumber \\&\quad = \frac{\pi ^4}{\sqrt{2}V}\frac{(L_{x}^{-2} + 3 L_{y}^{-2}) (L_{y}^{-2} - L_{z}^{-2}) - 2 L_{x}^{-2} L_{z}^{-2}}{\sqrt{\omega _{130}\omega _{011}^2\omega _{110}}}\nonumber \\&\quad = \frac{1}{\sqrt{2}V} \frac{\pi ^4}{L_z^4}2r^2\frac{ 2r^2 - 3}{ \sqrt{\omega _{011}^2\omega _{110}\omega _{130}}}. \end{aligned}$$
(36)

The combinatorial coefficients 8 and 2 coincide with the previous case. However, the result of the integration differs. The first of the mixed terms \(\langle ({\textbf {B}} {\textbf {B}} ) ({\textbf {E}} {\textbf {E}} )\rangle \) reads,

$$\begin{aligned}&\langle ({\textbf {B}} {\textbf {B}} ) ({\textbf {E}} {\textbf {E}} )\rangle :\int \textrm{d}^3\textrm{x} \langle 0|\tfrac{1}{\sqrt{2}}a^{\text {TE}}_{110}a^{\text {TE}}_{110}\,{:}{\textbf { (BB)(EE)}} {:}\,a^{\text {TM}+}_{110}a^{\text {TM}+}_{130}|0\rangle \nonumber \\&= \frac{1}{\sqrt{2^4V^4}} \, \int \textrm{d}^3\textrm{x}\, 4\,\nonumber \\&\quad \times \bigg [(-i)^2\sqrt{\frac{\omega _{011}^2}{\omega _{130}\omega _{110}}}\underbrace{({\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TM}_{130}{\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TM}_{110})({\varvec{\mathcal {A}}}^\text {TE}_{011}{\varvec{\mathcal {A}}}^\text {TE}_{011})}_{\int = -V/2 \cdot \pi ^2(L_{x}^{-2} + 3L_{y}^{-2})} ~\nonumber \\&\qquad +~ i^2\sqrt{\frac{\omega _{130}\omega _{110}}{\omega _{011}^2}}\underbrace{({\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TE}_{011}{\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TE}_{011}) ({\varvec{\mathcal {A}}}^\text {TM}_{130}{\varvec{\mathcal {A}}}^\text {TM}_{110})}_{\int = V/2 \cdot \pi ^2(L_{y}^{-2} - L_{z}^{-2})} ~\nonumber \\&\quad +~2i(-i)\sqrt{\frac{\omega _{110}}{\omega _{130}}}\underbrace{({\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TM}_{130}{\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TE}_{011}) ({\varvec{\mathcal {A}}}^\text {TM}_{110}{\varvec{\mathcal {A}}}^\text {TE}_{011})}_{\int = 0} ~\nonumber \\&\qquad + ~ 2i(-i)\sqrt{\frac{\omega _{130}}{\omega _{110}}}\underbrace{({\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TM}_{110}{\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TE}_{011}) ({\varvec{\mathcal {A}}}^\text {TM}_{130}{\varvec{\mathcal {A}}}^\text {TE}_{011})}_{\int = 0}\bigg ]\nonumber \\&\quad = \frac{1}{2\sqrt{2}V}\frac{\pi ^2}{L_z^2}\left( 4r^2 \sqrt{\frac{\omega _{011}^2}{\omega _{110}\omega _{130}}} - (r^2-1) \sqrt{\frac{\omega _{110}\omega _{130}}{\omega _{011}^2}} \right) . \end{aligned}$$
(37)

The last term,

$$\begin{aligned}&\langle ({\textbf {B}} {\textbf {E}} )^2 \rangle : \int \textrm{d}^3\textrm{x} \langle 0|\tfrac{1}{\sqrt{2}}a^{\text {TE}}_{110}a^{\text {TE}}_{110}\,{:}{\textbf { (BE)(BE)}} {:}\,a^{\text {TM}+}_{110}a^{\text {TM}+}_{130}|0\rangle \nonumber \\&= \frac{1}{\sqrt{2^4V^4}} \, \int \textrm{d}^3\textrm{x}\, 4\,\nonumber \\&\quad \times \bigg [(-i)^2\sqrt{\frac{\omega _{011}^2}{\omega _{130}\omega _{110}}}\underbrace{({\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TM}_{130}{\varvec{\mathcal {A}}}^\text {TE}_{011})({\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TM}_{110}{\varvec{\mathcal {A}}}^\text {TE}_{011})}_{\int = -3V/2 \cdot \pi ^2 L_{y}^{-2}}\nonumber \\&\qquad +~ i^2\sqrt{\frac{\omega _{130}\omega _{110}}{\omega _{011}^2}}\underbrace{({\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TE}_{011}{\varvec{\mathcal {A}}}^\text {TM}_{130}) ({\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TE}_{011}{\varvec{\mathcal {A}}}^\text {TM}_{110})}_{\int = V/2 \cdot \pi ^2 L_y^{-2}} \nonumber \\&\qquad +~i(-i)\sqrt{\frac{\omega _{110}}{\omega _{130}}}\underbrace{({\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TM}_{130}{\varvec{\mathcal {A}}}^\text {TE}_{011}) ({\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TM}_{110}{\varvec{\mathcal {A}}}^\text {TE}_{011})}_{\int = 0} ~\nonumber \\&\qquad + ~ i(-i)\sqrt{\frac{\omega _{130}}{\omega _{110}}}\underbrace{({\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TM}_{110}{\varvec{\mathcal {A}}}^\text {TM}_{130}) ({\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TE}_{011}{\varvec{\mathcal {A}}}^\text {TE}_{011})}_{\int = 0}\nonumber \\&\qquad +~i(-i)\sqrt{\frac{\omega _{110}}{\omega _{130}}}\underbrace{({\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TM}_{130}{\varvec{\mathcal {A}}}^\text {TE}_{011}) ({\textrm{rot}} {\varvec{\mathcal {A}}}^\text {TE}_{011}{\varvec{\mathcal {A}}}^\text {TM}_{110})}_{\int = 3V/2\cdot \pi ^2 L_y^{-2}} ~\nonumber \\&\qquad + ~ i(-i)\sqrt{\frac{\omega _{130}}{\omega _{110}}}\underbrace{({\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TM}_{110}{\varvec{\mathcal {A}}}^\text {TE}_{011}) ({\textrm{rot}}{\varvec{\mathcal {A}}}^\text {TE}_{011}{\varvec{\mathcal {A}}}^\text {TM}_{130})}_{\int = 0}\bigg ] \nonumber \\&\quad =\frac{1}{2\sqrt{2}V}\frac{\pi ^2}{L_z^2} r^2\left( 3\sqrt{\frac{\omega _{011}^2}{\omega _{110}\omega _{130}}} +3 \sqrt{\frac{\omega _{110}}{\omega _{130}}} - \sqrt{\frac{\omega _{130}}{\omega _{110}}}\right. \nonumber \\&\qquad \left. - \sqrt{\frac{\omega _{110}\omega _{130}}{\omega _{011}^2}} \right) . \end{aligned}$$
(38)

Finally, restoring the coefficient \(4\kappa \), the result (20)–(22) is obtained.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopchinskii, I., Satunin, P. Resonant generation of electromagnetic modes in nonlinear electrodynamics: quantum perturbative approach. Eur. Phys. J. D 78, 54 (2024). https://doi.org/10.1140/epjd/s10053-024-00850-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-024-00850-6

Navigation