Skip to main content
Log in

Structural Studies of the Qarakhanid Dirham Using X-Ray Diffraction and Neutron Tomography Methods

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The structure and spatial distribution of corrosion in the volume of the medieval Qarakhanid dirham dated the X–XII century A.D. (Anno Domini) has been investigated using non-destructive structural X-ray diffraction and neutron tomography methods. The phase composition and their spatial distribution inside the coins were obtained. The main phase of the studied dirham is the silver-copper alloy with copper fraction dominance up to 74 wt %. The basic phases of the corrosion fraction are cuprite Cu2O, tenorite CuO and chalcocite Cu2S. The non-uniform distribution of the corrosion penetration in the coin bulk was constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Non-Destructive Micro Analysis of Cultural Heritage Materials, Ed. by K. Janssens and R. Van Grieken (Elsevier, Amsterdam, 2005).

    Google Scholar 

  2. A. Adriaens, Spectrochim, Acta, Part B 60, 1503. (2005). https://doi.org/10.1016/j.sab.2005.10.006

    Article  Google Scholar 

  3. E. H. Lehmann, P. Vontobel, E. Deschler-Erb, and M. Soares, Nucl. Instrum. Methods Phys. Res., Sect. A 542, 68 (2005). https://doi.org/10.1016/j.nima.2005.01.013

  4. F. Kemmers and N. Myrberg, Archaeol. Dialogues 18, 87 (2011). https://doi.org/10.1017/S1380203811000146

    Article  Google Scholar 

  5. S. Davis, Acta Classica: Proc. Classical Assoc. S. Afr. 3, 67 (1960). https://doi.org/10.10520/AJA00651141\_54

    Article  Google Scholar 

  6. M. di Fazio, F. di Turo, L. Medeghini, L. Fabrizi, F. Catalli, and C. de Vito, Microchem. J. 144, 309 (2019). https://doi.org/10.1016/j.microc.2018.09.016

    Article  CAS  Google Scholar 

  7. L. Fabrizi, F. di Turo, L. Medeghini, M. di Fazio, F. Catalli, and C. de Vito, Microchem. J. 145, 419 (2019). https://doi.org/10.1016/j.microc.2018.10.056

    Article  CAS  Google Scholar 

  8. A. Mezzi, C. Riccucci, T. de Caro, E. Angelini, F. Faraldi, S. Grassini, and V. K. Gouda, Surf. Interface Anal. 10–11, 801 (2014). https://doi.org/10.1002/sia.5385

    Article  CAS  Google Scholar 

  9. K. Lockyear, Oxford J. Archaeol. 31, 191 (2012). https://doi.org/10.1111/j.1468-0092.2012.00385.x

    Article  Google Scholar 

  10. C. M. B. Martins and J. I. Martins, Prot. Met. Phys. Chem. Surf. 47, 128 (2011). https://doi.org/10.1134/S2070205110061012

    Article  CAS  Google Scholar 

  11. A. Kirfel, W. Kockelmann, and P. Yule, Archaeometry 53, 930 (2011). ttps://doi.org/https://doi.org/10.1111/j.1475-4754.2011.00588.x

  12. R. C. Fierascu, I. Fierascu, A. Ortan, F. Constantin, D. A. Mirea, and M. Statescu, Nucl. Instrum. Methods Phys. Res., Sect. B 401, 18 (2017). https://doi.org/10.1016/j.nimb.2017.04.030

    Article  CAS  Google Scholar 

  13. A. Doménech, M. T. Doménech-Carbó, T. Pasies, and M. del CarmenBouzas, Electroanalysis 24, 1945 (2012). https://doi.org/10.1002/elan.201200252

    Article  CAS  Google Scholar 

  14. M. P. Casaletto, G. M. Ingo, C. Riccucci, and F. Faraldi, Appl. Phys. A: Mater. Sci. Proces. 100, 937 (2010). https://doi.org/10.1007/s00339-010-5677-1

    Article  CAS  Google Scholar 

  15. D. W. Rice, P. Peterson, E. B. Rigby, P. B. P. Phipps, and R. J. Cappell, J. Electrochem. Soc. 128, 275 (1981). https://doi.org/10.1149/1.2127403

    Article  CAS  Google Scholar 

  16. F. Salvemini, S. R. Olsen, V. Luzin, U. Garbe, J. Davis, T. Knowles, and K. Sheedy, Mater. Charact. 118, 175 (2016). https://doi.org/10.1016/j.matchar.2016.05.018

    Article  CAS  Google Scholar 

  17. S. E. Kichanov, K. Nazarov, D. Kozlenko, I. Saprykina, E. Lukin, and B. Savenko, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11, 585 (2017). https://doi.org/10.1134/S1027451017030296

    Article  CAS  Google Scholar 

  18. Neutron Applications in Earth, Energy and Environmental Sciences, Ed. by R. Rinaldi, L. Liang, and H. Schober, Neutron Scattering Applications and Techniques, Ed by I. S. Anderson, A. J. Hurd, and R. L. McGreevy (Springer, New York, 2009); Neutron Imaging and Applications: A Reference for the Imaging Community, Ed. by I. S. Anderson, R. L. McGreevy, H. Z. Bilheux, and Z. Hassina, Neutron Scattering Applications and Techniques, Ed by I. S. Anderson, A. J. Hurd, and R. L. McGreevy (Springer, New York, 2009).

  19. J. Tate, Nucl. Instrum. Methods Phys. Res., Sect. B 14, 20 (1986). https://doi.org/10.1016/0168-583X(86)90417-9

  20. G. Weber, J. Guillaume, D. Strivay, H.P. Garnir, A. Marchal, and L. Martinot, Nucl. Instrum. Methods Phys. Res., Sect. B 161–163, 724 (2000). https://doi.org/10.1016/S0168-583X-(99)00948-9

  21. L. Beck, S. Bosonnet, S. Réveillon, D. Eliot, and F. Pilon, Nucl. Instrum. Methods Phys. Res., Sect. B 226, 153 (2004). https://doi.org/10.1016/j.nimb.2004.06.044

  22. M. Abramson, I. Saprykina, S. E. Kichanov, D. P. Kozlenko, and K. Nazarov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12, 114 (2018). https://doi.org/10.1134/S1027451018010202

    Article  CAS  Google Scholar 

  23. B. Bakirov, S. E. Kichanov, R. Khramchenkova, A. Belushkin, D. Kozlenko, and A. Sitdikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 376 (2020). https://doi.org/10.1134/S1027451020020433

    Article  CAS  Google Scholar 

  24. E. Lehmann, D. Mannes, A. Kaestner, and C. Grünzweig, Phys. Procedia 88, 5 (2017). https://doi.org/10.1016/j.phpro.2017.06.055

    Article  CAS  Google Scholar 

  25. N. Kardjilov, A. Hilger, I. Manke, M. Strobl, W. Treimer, and J. Banhart, Nucl. Instrum. Methods Phys. Res., Sect. A 542, 16 (2005). https://doi.org/10.1016/j.nima.2005.01.005

    Article  CAS  Google Scholar 

  26. M. Biran, “Karakhanid Khanate,” in The Encyclopedia of Empire, Ed. by J. M. MacKenzie (Wiley, New York, 2016). https://doi.org/10.1002/9781118455074.wbeoe156

    Google Scholar 

  27. R. Abazov, “The Karakhanid State (999–1140),” in The Palgrave Concise Historical Atlas of Central Asia (Palgrave Macmillan, New York, 2008), pp. 40–41. https://doi.org/10.1057/9780230610903_18.

  28. T.S. Noonan, J. Am. Orient. Soc. 94, 448 (2011). https://doi.org/10.2307/600587

    Article  Google Scholar 

  29. R. Naismith, Numis. Chron. (1966–) 165, 193 (2005).

  30. B. D. Kochnev, “Set of Inscriptions on Karakhanid Coins: Anthroponyms and Titles (Part 1),” in Eastern Historical Source Studies and Special Historical Disciplines (Nauka, Moscow, 1995). [Russian]

    Google Scholar 

  31. S. Album, Checklist of Islamic Coins, 3rd ed. (Santa Rosa, 2011).

    Google Scholar 

  32. M. Fedorov, Numis. Chron. (1966–) 160, 171 (2000).

  33. H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969). https://doi.org/10.1107/s0021889869006558

    Article  CAS  Google Scholar 

  34. J. Rodríguez-Carvajal, Phys. B (Amsterdam, Neth.) 192, 55 (1993). https://doi.org/10.1016/0921-4526(93)90108-I

  35. J. Rodríguez-Carvajal, “Magnetic Structures from Powder and Single Crystal Data,” in Applied Crystallography, Ed. by H. Morawiec and D. Stróz (World Sci., 2014), pp. 30–36. https://doi.org/10.1142/9789812811325_0005

  36. B. A. Abdurakhimov, M. Y. Tashmetov, B. S. Yuldashev, S. E. Kichanov, E. V. Lukin, D. P. Kozlenko, S. A. Kulikov, V. N. Shvetsov, N. B. Ismatov, A. R. Saidov, A. B. Normurodov, and A. V. Rutkauskas, Nucl. Instrum. Methods Phys. Res., Sect. A 989 164959 (2021). https://doi.org/10.1016/j.nima.2020.164959

    Article  CAS  Google Scholar 

  37. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nat. Methods 9, 671 (2012). https://doi.org/10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  38. F. Brun, L. Massimi, M. Fratini, D. Dreossi, F. Billé, A. Accardo, R. Pugliese, and A. Cedola, Adv. Struct. Chem. Imaging 3, 4 (2017). https://doi.org/10.1186/s40679-016-0036-8

    Article  Google Scholar 

  39. J. J. Rant, Z. Miliič, P. Turk, and I. Lengar, “Neutron Radiography as a NDT Method in Archaeology,” in Proceedings of the 8th Int. Conf. of the Slovenian Society for Non-Destructive Testing: Application of Contemporary Non-Destructive Testing in Engineering, Portorož, Slovenia (2005), pp. 181–188.

  40. B. Schmid, J. Schindelin, A. Cardona, M. Longair, and M. Heisenberg, BMC Bioinf. 11, 274 (2010). https://doi.org/10.1186/1471-2105-11-274

  41. P. Kienzle, NIST Neutron Activation and Scattering Calculator, NIST Cent. Neutron Res. (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. A. Abdurakhimov, B. A. Bakirov or S. E. Kichanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdurakhimov, B.A., Tashmetov, M.Y., Bakirov, B.A. et al. Structural Studies of the Qarakhanid Dirham Using X-Ray Diffraction and Neutron Tomography Methods. J. Surf. Investig. 15, 1232–1237 (2021). https://doi.org/10.1134/S1027451021060021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021060021

Keywords:

Navigation