Skip to main content
Log in

Production of reference alloys for the conservation of archaeological silver-based artifacts

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the framework of the EC PROMET project, the chemical composition and metallurgical features of a large number of archaeological artifacts were investigated by different analytical surface and bulk techniques, such as Optical Microscopy (OM), Scanning Electron Microscopy coupled with energy dispersive X-ray micro-analysis (SEM-EDS), X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). The study of the corrosion products grown on the archaeological Ag-based artifacts revealed a quite ubiquitous and nearly constant presence of chlorine from the soil as the main corroding agent, mainly producing chlorargyrite (AgCl). Results of this extensive chemical, physical and metallurgical characterization were used to produce modern reference Ag-based alloys with a chemical composition and micro-chemical structure similar to that of ancient alloys. Furthermore, these reference Ag-based alloys were submitted to an accelerated degradation method in order to produce corroded samples to be used as sacrificial materials for testing corrosion inhibiting products. The production of artificial “patinas” and corrosion layers was made by a chemical and soil-induced degradation procedure. The comparison of the micro-chemical structures of natural and artificial corrosion layers shows that the selected degradation method produces “patinas” resembling those grown on archaeological artifacts from a chemical, structural and micro-morphological point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.A. Scott, J. Am. Inst. Conserv. 29, 193 (1990)

    Article  Google Scholar 

  2. I.D. MacLeod, ICCM Bulletin, ICC M Inc., Canberra, VII (1981), p. 16

  3. E. Paparazzo, L. Moretto, Vacuum 55, 59 (1999)

    Article  Google Scholar 

  4. M.P. Casaletto, T. de Caro, G.M. Ingo, C. Riccucci, Appl. Phys. A 83, 617 (2006)

    Article  ADS  Google Scholar 

  5. M.P. Casaletto, F. Caruso, T. de Caro, G.M. Ingo, C. Riccucci, in Proceedings of Metal 07, vol. 2, Amsterdam, 17–21 September (2007), pp. 20–25

  6. D.A. Scott, J. Am. Inst. Conserv. 33, 1 (1994)

    Article  Google Scholar 

  7. G.M. Ingo, E. Angelini, T. de Caro, G. Bultrini, I. Calliari, Appl. Phys. A 79, 199 (2004)

    Article  ADS  Google Scholar 

  8. G.M. Ingo, T. de Caro, C. Riccucci, E. Angelini, S. Grassini, S. Balbi, P. Bernardini, D. Salvi, L. Bousselmi, A. Çilingiroglu, M. Gener, V.K. Gouda, O. Al Jarrah, S. Khosroff, Z. Mahdjoub, Z. Al Saad, W. El-Saddik, P. Vassiliou, Appl. Phys. A 83, 513 (2006)

    Article  ADS  Google Scholar 

  9. R.M. Organ, The current status of the treatment of corroded metal artifacts, in Corrosion and Metal Artifacts, ed. by B. Floyd Brown et al. NBS Special Publication 479. National Bureau of Standards/US Department of Commerce, Washington, DC (1977), pp. 107–142

  10. W. Gowland, Archaeologia 69, 121 (1918)

    Google Scholar 

  11. D.A. Scott, Archaeometry 38, 305 (1996)

    Article  Google Scholar 

  12. JCPDS Powder Diffraction File. Int. Centre for Diffraction Data, Swarthmore

  13. C.D. Wagner, L.E. Davis, W.M. Riggs, Surf. Interface Anal. 2, 53 (1986)

    Article  Google Scholar 

  14. F.C. Thompson, A.K. Chatterjee, Stud. Conserv. 1, 115 (1954)

    Article  Google Scholar 

  15. R.J.H. Wanhill, J.P.H.M. Steijaert, R. Leenheer, J.F.W. Koens, Archeometry 40, 123 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Casaletto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casaletto, M.P., Ingo, G.M., Riccucci, C. et al. Production of reference alloys for the conservation of archaeological silver-based artifacts. Appl. Phys. A 100, 937–944 (2010). https://doi.org/10.1007/s00339-010-5677-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5677-1

Keywords

Navigation