Skip to main content
Log in

The Effect of Divalent Ions on the Structure of Bilayers in the Dimyristoylphosphatidylcholine Vesicles

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

We have studied changes in the structural parameters of 1,2-dimyristoyl-sn-3-phosphocholine (DMPC) unilamellar vesicles at a concentration series 0–30 mM of divalent metal cations Ca2+, Mg2+, and Co2+ by means of small-angle neutron scattering (SANS). The membrane structural parameters (thickness and area per lipid) were obtained at different concentrations of cations in the gel and fluid phases of membrane. Both Ca2+ and Mg2+ ions at the concentrations of 0–1 mM increase the membrane thickness by 1.9 Å and 2.9 Å in the fluid and gel phase, respectively. In the concentration range of 1–30 mM, either a weak tendency to a thickness decrease of ~ 1 Å is observed, or the thickness does not change at all. In the case of Co2+ ions, all changes are extremely weak. We advocate a model of electrostatic interactions for these systems that encompasses the formation of ion bridges between lipid headgroups. Using the Langmuir adsorption isotherm we estimate the fraction of Ca2+ ions bound to the DMPC membrane. The developed model is of an interest to the future studies of membrane interactions with various charged peptides, such as those from the amyloid-β family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. Pabst, N. Kučerka, M.-P. Nieh, M. C. Rheinstädter, and J. Katsaras, Chem. Phys. Lipids 163, 460 (2010). https://doi.org/10.1016/j.chemphyslip.2010.03.010

    Article  CAS  Google Scholar 

  2. B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell (Garland Science, New York, 2015).

  3. P. Lo Nostro and B. W. Ninham, Chem. Rev. 112, 2286 (2012). https://doi.org/10.1021/cr200271j

    Article  CAS  Google Scholar 

  4. S. A. Tatulian, Eur. J. Biochem. 170, 413 (1987). https://doi.org/10.1111/j.1432-1033.1987.tb13715.x

    Article  CAS  Google Scholar 

  5. N. Kučerka, E. Papp-Szabo, M.-P. Nieh, T. A. Harroun, S. R. Schooling, J. Pencer, E. A. Nicholson, T. J. Beveridge, and J. Katsaras, J. Phys. Chem. B 112, 8057 (2008). https://doi.org/10.1021/jp8027963

    Article  CAS  Google Scholar 

  6. J. A. Beto, Clin. Nutr. Res. 4, 1 (2015). https://doi.org/10.7762/cnr.2015.4.1.1

    Article  Google Scholar 

  7. U. Gröber, J. Schmidt, and K. Kisters, Nutrients 7, 8199 (2015). https://doi.org/10.3390/nu7095388

    Article  CAS  Google Scholar 

  8. G. Bánfalvi, Heavy metals, trace elements and their cellular effects, in Cellular Effects of Heavy Metals, Ed. by G. Bánfalvi (Springer, Amsterdam, Netherlands, 2011), p. 3. https://doi.org/10.1007/978-94-007-0428-2_1

    Book  Google Scholar 

  9. H. I. Petrache, T. Zemb, L. Belloni, and V. A. Parsegian, Proc. Natl. Acad. Sci. U. S. A. 103, 7982 (2006). https://doi.org/10.1073/pnas.0509967103

    Article  CAS  Google Scholar 

  10. L. J. Lis, W. T. Lis, V. A. Parsegian, and R. P. Rand, Biochemistry 20, 1771 (1981). https://doi.org/10.1021/bi00510a010

    Article  CAS  Google Scholar 

  11. C. G. Sinn, M. Antonietti, and R. Dimova, Colloids Surf., A 282, 410 (2006). https://doi.org/10.1016/j.colsurfa.2005.10.014

    Article  CAS  Google Scholar 

  12. A. Lee, Biochim. Biophys. Acta 1666, 62 (2004). https://doi.org/10.1016/j.bbamem.2004.05.012

    Article  CAS  Google Scholar 

  13. N. Kučerka, M.-P. Nieh, J. Pencer, J. N. Sachs, and J. Katsaras, Gen. Physiol. Biophys. 28, 117 (2009). https://doi.org/10.4149/gpb_2009_02_117

    Article  CAS  Google Scholar 

  14. D. Uhríková, N. Kučerka, J. Teixeira, V. Gordeliy, and P. Balgavý, Chem. Phys. Lipids 155, 80 (2008). https://doi.org/10.1016/j.chemphyslip.2008.07.010

    Article  CAS  Google Scholar 

  15. N. Kučerka, J. Pencer, J. N. Sachs, J. F. Nagle, and J. Katsaras, Langmuir 23, 1292 (2007). https://doi.org/10.1021/la062455t

    Article  CAS  Google Scholar 

  16. A. I. Kuklin, D. V. Soloviev, A. V. Rogachev, P. K. Utrobin, Y. S. Kovalev, M. Balasoiu, O. I. Ivankov, A. P. Sirotin, T. N. Murugova, T. B. Petukhova, Y. E. Gorshkova, R. V. Erhan, S. A. Kutuzov, A. G. Soloviev, and V. I. Gordelii, J. Phys.: Conf. Ser. 291, 7 (2011). https://doi.org/10.1088/1742-6596/291/1/012013

    Article  CAS  Google Scholar 

  17. A. I. Kuklin, A. D. Rogov, Y. E. Gorshkova, P. K. Utrobin, Y. S. Kovalev, A. V. Rogachev, O. I. Ivankov, S. A. Kutuzov, D. V. Soloviov, and V. I. Gordeliy, Phys. Part. Nucl. Lett. 8, 119 (2011). https://doi.org/10.1134/S1547477111020075

    Article  CAS  Google Scholar 

  18. A. G. Soloviev, T. M. Solovjeva, O. I. Ivankov, D. V. Soloviov, A. V. Rogachev, and A. I. Kuklin, J. Phys.: Conf. Ser. 848, 7 (2017). https://doi.org/10.1088/1742-6596/848/1/012020

    Article  CAS  Google Scholar 

  19. L. A. Feigin and D. I. Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Springer, New York, 1987). https://doi.org/10.1007/978-1-4757-6624-0

    Book  Google Scholar 

  20. M. A. Kiselev, D. Lombarde, A. M. Kiselev, P. Lezi, and V. L. Aksenov, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 11, 24 (2003).

  21. N. Kučerka, M. A. Kiselev, and P. Balgavý, Eur. Biophys. J. 33, 328 (2004). https://doi.org/10.1007/s00249-003-0349-0

    Article  CAS  Google Scholar 

  22. G. Fournet, Small-Angle Scattering of X-Rays (Wiley, New York, 1955).

    Google Scholar 

  23. SasView (2020). Sas View for Small Angle Scattering Analysis. https://www.sasview.org/. Cited May 25, 2020.

  24. Yu. E. Gorshkova, PhD. Dissertation in Mathematics and Physics (Joint Inst. Nucl. Res., Dubna, 2017).

  25. J. F. Nagle and S. Tristram-Nagle, Biochim. Biophys. Acta 1469, 159 (2000). https://doi.org/10.1016/S0304-4157(00)00016-2

    Article  CAS  Google Scholar 

  26. J. F. Nagle and D. A. Wilkinson, Biophys. J. 23, 159 (1978). https://doi.org/10.1016/S0006-3495(78)85441-1

    Article  CAS  Google Scholar 

  27. N. Kučerka, S. Tristram-Nagle, and J. F. Nagle, J. Membr. Biol. 208, 193 (2005). https://doi.org/10.1007/s00232-005-7006-8

    Article  CAS  Google Scholar 

  28. N. Kučerka, E. Dushanov, K. T. Kholmurodov, J. Katsaras, and D. Uhríková, Langmuir 33, 3134 (2017). https://doi.org/10.1021/acs.langmuir.6b03228

    Article  CAS  Google Scholar 

  29. J. Seelig, Cell Biol. Int. Rep. 14, 353 (1990). https://doi.org/10.1016/0309-1651(90)91204-H

    Article  CAS  Google Scholar 

  30. Y. Izumitani, J. Colloid Interface Sci. 166, 143 (1994). https://doi.org/10.1006/jcis.1994.1281

    Article  CAS  Google Scholar 

  31. D. Huster, G. Paasche, U. Dietrich, O. Zschörnig, T. Gutberlet, K. Gawrisch, and K. Arnold, Biophys. J. 77, 879 (1999). https://doi.org/10.1016/S0006-3495(99)76939-0

    Article  CAS  Google Scholar 

  32. R. Zidovetzki, A. W. Atiya, and H. De Boeck, Membr. Biochem. 8, 177 (1989). https://doi.org/10.3109/09687688909025830

    Article  CAS  Google Scholar 

  33. H. Binder and O. Zschörnig, Chem. Phys. Lipids 115, 39 (2002). https://doi.org/10.1016/S0009-3084(02)00005-1

    Article  CAS  Google Scholar 

  34. C. T. M. Le, A. Houri, N. Balage, B. J. Smith, and A. Mechler, Front. Mater. 5, 1 (2019). https://doi.org/10.3389/fmats.2018.00080

    Article  CAS  Google Scholar 

  35. S. De Kanti, N. Kanwa, V. Ahamed, and A. Chakraborty, Phys. Chem. Chem. Phys. 20, 14796 (2018). https://doi.org/10.1039/c8cp01774c

    Article  CAS  Google Scholar 

  36. J. Yang, C. Calero, M. Bonomi, and J. Marti, J. Chem. Theory Comput. 11, 4495 (2015). https://doi.org/10.1021/acs.jctc.5b00540

    Article  CAS  Google Scholar 

  37. M. Javanainen, A. Melcrová, A. Magarkar, Z. P. Jurkiewic, M. Hof, P. Jungwirth, and H. Martinez-Seara, Chem. Commun. 53, 5380 (2017). https://doi.org/10.1039/c7cc02208e

    Article  CAS  Google Scholar 

  38. C. Scomparin, S. Lecuyer, M. Ferreira, T. Charitat, and B. Tinland, Eur. Phys. J. E 28, 211 (2009). https://doi.org/10.1140/epje/i2008-10407-3

    Article  CAS  Google Scholar 

  39. H. A. Stern and S. E. Feller, J. Chem. Phys. 118, 3401 (2003). https://doi.org/10.1063/1.1537244

    Article  CAS  Google Scholar 

  40. J. M. Moore, Physical Chemistry, 4th ed. (Prentice-Hall, Englewood Cliffs, NJ, 1972).

    Google Scholar 

  41. K. Satoh, Biochim. Biophys. Acta 1239, 239 (1995). https://doi.org/10.1016/0005-2736(95)00154-U

    Article  Google Scholar 

  42. C. Altenbach and J. Seelig, Biochemistry 23, 3913 (1984). https://doi.org/10.1021/bi00312a019

    Article  CAS  Google Scholar 

  43. E. Chibowski and A. Szcześ, Adsorption 22, 755 (2016). https://doi.org/10.1007/s10450-016-9767-z

    Article  CAS  Google Scholar 

  44. A. McLaughlin, C. Grathwohl, and S. McLaughlin, Biochim. Biophys. Acta 513, 338 (1978). https://doi.org/10.1016/0005-2736(78)90203-1

    Article  CAS  Google Scholar 

  45. J. Umbsaar, E. Kerek, and E. J. Prenner, Chem. Phys. Lipids 210, 28 (2018). https://doi.org/10.1016/j.chemphyslip.2017.11.016

    Article  CAS  Google Scholar 

  46. E. Eriksson, Principles and Applications of Hydrochemistry (Springer, Amsterdam, 1985). https://doi.org/10.1007/978-94-009-4836-5

    Book  Google Scholar 

  47. F. David, V. Vokhmin, and G. Ionova, J. Mol. Liq. 90, 45 (2001). https://doi.org/10.1016/S0167-7322(01)00106-4

    Article  CAS  Google Scholar 

  48. Y. Marcus, J. Chem. Soc., Faraday Trans. 87, 2995 (1991). https://doi.org/10.1039/FT9918702995

    Article  CAS  Google Scholar 

  49. H. Ohtaki and T. Radnai, Chem. Rev. 93, 1157 (1993). https://doi.org/10.1021/cr00019a014

    Article  CAS  Google Scholar 

  50. H. Ohtaki and H. Yamatera, Structure and Dynamics of Solutions (Elsevier, Oxford, 1992).

    Google Scholar 

  51. I. Bertini, C. Luchinat, G. Parigi, and E. Ravera, NMR of Paramagnetic Molecules: Applications to Metallobiomolecules and Models, 2nd ed. (Elsevier, Amsterdam, 2016).

    Google Scholar 

  52. R. Crichton, Biological Inorganic Chemistry: A New Introduction to Molecular Structure and Function, 3rd ed. (Elsevier, Amsterdam, 2018).

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 19-72-20 186).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Kurakin or N. Kučerka.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurakin, S.A., Ermakova, E.V., Ivankov, A.I. et al. The Effect of Divalent Ions on the Structure of Bilayers in the Dimyristoylphosphatidylcholine Vesicles. J. Surf. Investig. 15, 211–220 (2021). https://doi.org/10.1134/S1027451021020075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021020075

Keywords:

Navigation