Skip to main content
Log in

Features of Vanadium-Surface Damage Induced by Pulsed Laser Radiation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The features of the damage of the surface layer of vanadium under the action of pulsed laser radiation are studied. Laser irradiation is carried out in air using a GOS 1001 setup in the Q-switching mode with the following parameters: flux power density q = 1.2 × 108 W/cm2, pulse duration τ0 = 50 ns, and number of pulses N = 1–6. The typical surface damages induced by the laser pulses are found to include the melting of material, a microcrack network, a wavy relief, and drop-like particles. The central region characterized by the greatest degree of damage contains also individual drops of metal, which crystallized like a spiral. The heat-affected zone (HAZ) adjacent to the central one is damaged to a significantly weaker extent. Surface degradation increases as the number of pulses increases. Laser irradiation is revealed to change the X-ray diffraction (XRD) patterns: loss of texture, presence of vanadium-oxide signal, peak broadening, and lattice parameter increase (from 3.022(2) to 3.027(3) Å). It is shown that preliminary irradiation with argon ions (dose of 1022 m–2, E = 20 keV) affects no surface damage of the central region, while in the adjacent heat-affected zone, there is a spallation of local surface regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. A. Gribkov, F. I. Grigor’ev, B. A. Kalin, and V. L. Yakushin, Promising Radiation–Beam Technologies of Material Treatment (Kruglyi God, Moscow, 2001) [in Russian].

    Google Scholar 

  2. V. A. Gribkov, A. S. Demin, N. A. Epifanov, et al., Perspekt. Mater., No. 12, 15 (2018). https://doi.org/10.30791/1028-978X-2018-12-15-27

  3. A. Y. Vorobyev and G. Chunlei, Opt. Express 14 (6), 2164 (2006).

    Article  CAS  Google Scholar 

  4. E. V. Demina, V. A. Gribkov, M. D. Prusakova, et al., Perspekt. Mater., No. 1, 39 (2018). https://doi.org/10.30791/1028-978X-2018-12-34-45

  5. E. V. Morozov, A. S. Demin, E. N. Pimenov, et al., Inorg. Mater. Appl. Res. 9 (3), 361 (2018).

    Article  Google Scholar 

  6. A. Steudel, A. Huber, J. Kreter, et al., Proc. 22nd Int. Conf. on Plasma Surface Interaction (Rome, Italy, 30 May–3 June2016), p. 16 323.

  7. V. M. Gusev, N. P. Busharov, S. M. Naftulin, and A. M. Pronichev, Prib. Tekh. Eksp. 4, 19 (1969).

    Google Scholar 

  8. I. V. Borovitskaya, E. N. Pimenov, V. A. Gribkov, et al., Russ. Metall. 2017 (11), 928 (2017).

    Article  Google Scholar 

  9. A. A. Chernov, Usp. Fiz. Nauk 73 (2), 277 (1961).

    Article  CAS  Google Scholar 

  10. I. V. Borovitskaya, V. Ya. Nikulin, G. G. Bondarenko, et al., Russ. Metall. 2018 (3), 266 (2018).

    Article  Google Scholar 

  11. V. V. Kuznetsov, Phase Transition Effects in Matter Impacted by High-Density Energy (at the Example of Colliding Metals) (Inst. Geol. Geophys., Novosibirsk, 1985) [in Russian].

    Google Scholar 

  12. S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and Yu. V. Khodyko, The Effect of High-Power Radiation on Metals (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  13. Yu. M. Klimov, V. S. Maiorov, and M. V. Khoroshev, Interaction of Laser Radiation with Matter (MIIGAiK, Moscow, 2014) [in Russian].

  14. M. A. Krishtal, A. A. Zhukov, and A. N. Kokora, Structure and Properties of Laser Treated Alloys (Metallurgiya, Moscow, 1973) [in Russian].

    Google Scholar 

  15. G. G. Bondarenko, L. I. Ivanov, and V. A. Yanushkevich, Fiz. Khim. Obrab. Mater., No. 4, 19 (1973).

  16. M. I. Guseva and Yu. V. Martynenko, Usp. Fiz. Nauk 135 (4), 671 (1981).

    Article  CAS  Google Scholar 

  17. I. V. Borovitskaya, L. S. Danelyan, V. V. Zatekin, et al., Vopr. At. Nauki Tekh., Ser. Termoyad. Sint., No. 2, 46 (2011).

  18. V. V. Sidnev, Yu. V. Skvortsov, N. M. Umrikhin, and F. R. Khamidulin, Vopr. At. Nauki Tekh., Ser. Termoyad. Sint., No. 2 (12), 12 (1987).

  19. L. I. Gomozov, M. I. Guseva, A. N. Mansurova, et al., Metally, No. 4, 86 (1995).

    Google Scholar 

  20. S. A. Maslyaev, V. N. Pimenov, Yu. M. Platov, et al., Perspekt. Mater., No. 3, 39 (1998).

Download references

Funding

The work was carried out under the State Order (no. 075-00746-19-00).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Borovitskaya or A. N. Mansurova.

Additional information

Translated by O. Golosova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borovitskaya, I.V., Korshunov, S.N., Mansurova, A.N. et al. Features of Vanadium-Surface Damage Induced by Pulsed Laser Radiation. J. Surf. Investig. 14, 484–489 (2020). https://doi.org/10.1134/S1027451020020068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020020068

Keywords:

Navigation