Skip to main content
Log in

Electrophysical Properties of Polycrystalline CuIn0.95Ga0.05Se2 Films

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Polycrystalline CuIn0.95Ga0.05Se2 films are obtained by a two-step procedure of the controlled selenization of intermetallic CuIn0.95Ga0.05 layers. The effect of the selenization temperature and the selenized intermetallic-film thickness on the structure and electrophysical properties of the formed selenide films is studied. With an increase in the selenization temperature, the degree of imperfection of the polycrystalline films is shown to decrease and the efficiency of Ga incorporation into the crystal lattice is shown to increase. Based on the results of studying the electrophysical properties of synthesized samples, the nature of the microstructure effect on the current-transfer mechanisms in polycrystalline CuIn0.95Ga0.05Se2 films is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. H.-W. Schock and R. Noufi, Prog. Photovoltaics 8 (1), 151 (2000).

    Article  CAS  Google Scholar 

  2. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. Magorian Friedlmeier, and M. Powalla, Phys. Status Solidi RRL 9 (1), 28 (2015).

    Article  CAS  Google Scholar 

  3. J. Chantana and T. Minemoto, AAPPS Bull. 27 (2), 7 (2017).

    CAS  Google Scholar 

  4. G. F. Novikov and M. V. Gapanovich, Physics–Uspekhi 60 (2), 161 (2017).

    Article  CAS  Google Scholar 

  5. G. Y. Kim, W. Jo, H.-J. Jo, D.-H. Kim, and J.-K. Kang, Curr. Appl. Phys. 15, 44 (2015).

    Article  Google Scholar 

  6. M. Monsefi and D. Kuo, J. Electron. Mater. 43 (4), 1214 (2014).

    Article  CAS  Google Scholar 

  7. X. Zhang, M. Manno, A. Baruth, M. Johnson, E. S. Aydil, and C. Leighton, ACS Nano 7 (3), 2781 (2013).

    Article  CAS  Google Scholar 

  8. R. Huh, H. Ahn, and Y. Um, New Physics: Sae Mulli 65 (8), 735 (2015).

    Article  CAS  Google Scholar 

  9. M. A. Aliev, S. N. Kallaev, T. M. Gadzhiev, R. M. Gadzhieva, A. M. Ismailov, and B. A. Bilalov, Tech. Phys. Lett. 42 (7), 715 (2016).

    Article  CAS  Google Scholar 

  10. T. M. Gadzhiev, M. A. Aliev, A. Sh. Asvarov, R. M. Gadzhieva, B. A. Bilalov, A. M. Ismailov, and Z. V. Shomakhov, Izv. Vyssh. Uchebn. Zaved., Elektron. 24 (2), 107 (2019).

    Google Scholar 

  11. E. P. Skipetrov, E. A. Zvereva, L. A. Skipetrova, V. V. Belousov, and A. M. Mousalitin, J. Cryst. Growth 210, 292 (2000).

    Article  CAS  Google Scholar 

  12. S. A. Kolosov, Yu. V. Klevkov, and A. F. Plotnikov, Semiconductors 38 (3), 293 (2004).

    Article  CAS  Google Scholar 

  13. E. J. Friedrich, R. Fernández-Ruiz, J. M. Merino, and M. León, Powder Diffr. 25 (3), 253 (2010).

    Article  CAS  Google Scholar 

  14. S. B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. 57 (16), 9642 (1998).

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Education of the Russian Federation within State Contracts of the Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences and the Federal Scientific Research Center “Crystallography and Photonics” using their facilities for growth and characterization of the films and by the Russian Foundation for Basic Research (project No. 18-29-12 099 mk) for the study of the electrophysical properties of the films.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Sh. Asvarov or A. E. Muslimov.

Additional information

Translated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadzhiev, T.M., Aliev, M.A., Asvarov, A.S. et al. Electrophysical Properties of Polycrystalline CuIn0.95Ga0.05Se2 Films. J. Surf. Investig. 13, 950–954 (2019). https://doi.org/10.1134/S1027451019050288

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019050288

Keywords:

Navigation