Skip to main content
Log in

Diagnostics of the Elemental Composition of PZT Films on Platinum by X-Ray Microprobe Analysis

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The problem of diagnosing the elemental composition of PZT (lead zirconate titanate) films on platinum is solved by X-ray microprobe analysis. The resulting compositions differ markedly for thin (thickness of 300 nm, conventional for microelectronic applications) and thick films (3 µm to avoid the effect of the substrate on the results of analysis of the film composition) deposited by magnetron sputtering under identical conditions. The matrix corrections for the backscattering of electrons and fluorescence excitation are calculated for two groups of samples. It is shown that these corrections, taken for the concentrations of Ti/Zr and Pb/(Ti + Zr), are not significant and cannot explain the observed difference in the compositions. The mechanism of formation of the composition of thin PZT films at different stages of deposition is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. Reed, Electron Microprobe Analysis (Cambridge Univ. Press, Cambridge, 1975; Mir, Moscow, 1979).

  2. V. G. Beshenkov, A. G. Znamenskii, and V. A. Marchenko, J Surf. Invest.: X-Ray Synchrotron Neutron Tech. 4 (5), 758 (2010).

    Article  Google Scholar 

  3. V. G. Beshenkov, A. A. Burlakov, A. G. Znamenskii, and V. A. Marchenko. Tech Phys Lett. 40 (8), 644 (2014).

    Article  CAS  Google Scholar 

  4. N. N. Mikheev, M. A. Stepovich, and E. V. Shirokova, J Surf. Invest.: X-Ray Synchrotron Neutron Tech. 7 (6), 1194 (2013). https://doi.org/10.1134/S1027451013060335

    Article  CAS  Google Scholar 

  5. E. I. Rau, S. A. Ditsman, S. V. Zaitsev, et al., Bull. Russ. Acad. Sci. Phys. 77 (8), 955 (2013). https://doi.org/10.3103/S1062873813080364

    Article  CAS  Google Scholar 

  6. L. A. Pavlova, O. Yu. Belozerova, L. F. Paradina, and L. F. Suvorova, X-Ray Spectral Electron Microprobe Analysis of Environmental and Ecological Objects (Nauka, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  7. W. Reuter, Proceed. 6th Int. Conf. on X-Ray Optics and Microanalysis (Tokyo, 1972), p. 120.

  8. A. V. Zablotskii, A. Yu. Kuzin, N. N. Mikheev, et al., Meas Tech. 56 (7), 817 (2013).

    Article  Google Scholar 

  9. M. A. Blokhin and I. G. Shveitser, X-Ray Spectroscopy Reference Book (Nauka, Moscow, 1982).

    Google Scholar 

  10. V. N. Detsik, E. Yu. Kaptelov, S. A. Kukushkin, et al., Fiz. Tverd. Tela 39 (1), 121 (1997).

    CAS  Google Scholar 

  11. I. P. Pronin, E. Yu. Kaptelov, S. V. Senkevich, et al., Phys. Solid State 52 (1), 132 (2010).

    Article  CAS  Google Scholar 

  12. A. G. Znamenskii and V. A. Marchenko, Tech. Phys. 43 (7), 766 (1998).

    Article  Google Scholar 

  13. S. M. Mukhopadhyay and T. C. S. Chen, J. Phys. D: Appl. Phys. 28, 2170 (1995). https://doi.org/10.1088/0022-3727/28/10/028

    Article  CAS  Google Scholar 

  14. K. Ishibashi, K. Hirata, and N. Hosokawa, J. Vac. Sci. Technol. A 10, 1718 (1992). https://doi.org/10.1116/1.577776

    Article  CAS  Google Scholar 

  15. E. Cattan, B. Agius, H. Achard, et al., J. Vac. Sci. Technol. A 11, 2808 (1993). https://doi.org/10.1116/1.578645

    Article  CAS  Google Scholar 

  16. J. W. Coburn, E. Taglauer, and E. Kay, Jpn. J. Appl. Phys. 13, 2 (1974). https://doi.org/10.7567/JJAPS.2S1.501

    Article  Google Scholar 

  17. J. Bohdansky, J. Roth, and H. L. Bay, J. Appl. Phys. 51, 2861 (1980). https://doi.org/10.1063/1.327954

    Article  CAS  Google Scholar 

  18. D. Theirich and J. Engemann, Nucl. Instrum. Methods. Phys. Res. 59–60 (part 1), 336 (1991). https://doi.org/10.1016/0168-583X(91)95235-6

    Article  Google Scholar 

  19. C. Yan and Q. Y. Zhang, AIP Adv 2, 032107 (2012). https://doi.org/10.1063/1.4738951

    Article  CAS  Google Scholar 

  20. V. G. Beshenkov, A. B. Grigor’ev, and V. A. Marchenko, Tech. Phys. 47 (5), 621 (2002).

    Article  CAS  Google Scholar 

  21. K. Suu, A. Osawa, Y. Nishioka, et al., Jpn. J. Appl. Phys. 36 (9B, part 1), 5789 (1997). https://doi.org/10.1143/JJAP.36.5789

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported within State Assignment no. 007-00220-18-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Beshenkov.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beshenkov, V.G., Znamenskii, A.G., Marchenko, V.A. et al. Diagnostics of the Elemental Composition of PZT Films on Platinum by X-Ray Microprobe Analysis. J. Surf. Investig. 13, 941–945 (2019). https://doi.org/10.1134/S1027451019050227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019050227

Keywords:

Navigation