Skip to main content
Log in

On the Dynamic Annealing of Ion-Induced Radiation Damage in Diamond under Irradiation at Elevated Temperatures

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The structure and properties of the near surface layer of diamond after high-fluence irradiation at elevated temperatures with 30-keV Ar+, Ne+, N+, \({\text{N}}_{{\text{2}}}^{ + }\) and C+ ions are studied. Dynamic annealing at temperatures above 500°С results in recrystallization of the diamond phase only in the case of irradiation with carbon ions, and irradiation with impurity ions causes graphitization of the ion-modified layer of diamond. According to Raman spectroscopy and reflection high-energy electron diffraction data, a nanographite structure is formed in the modified layer when irradiated with noble-gas ions. When irradiated with carbon ions, diamond grows and recrystallizes with a thin (~1 nm) graphite-like layer on the surface. In the case of nitrogen ions, a graphite layer is observed up to 720°С. Graphite-like layers on the surface of diamond are thermostable and, according to X-ray photoelectron spectroscopy, are layers of sp2 carbon. The Raman spectroscopy of visible light shows the different optical transparency of ion-induced structures on the surface of diamond, which correlates with the resistivities. The diamond structure disordered during ion irradiation at room temperature and the nanographite structure are more transparent than the graphite structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. S. Nelson, J. A. Hudson, D. J. Mazey, et al., Proc. R. Soc. London, Ser. A 386, 211 (1983).

    Article  Google Scholar 

  2. J. F. Prins, Mater. Sci. Rep. 7, 271 (1992).

    Article  Google Scholar 

  3. R. Kalish, Semicond. Semimetals 76, 145 (2003).

    Article  Google Scholar 

  4. N. A. Kiselev, J. L. Hutchison, V. V. Raddatis, et al., Micron 36, 81 (2005).

    Article  Google Scholar 

  5. P. Olivero, S. Rubanov, P. Reichart, et al., Diamond Relat. Mater. 15, 1614 (2006).

    Article  Google Scholar 

  6. V. P. Popov, L. N. Safronov, O. V. Naumova, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 282, 100 (2012).

    Google Scholar 

  7. P. Philipp, L. Bischoff, U. Treske, et al., Carbon 80, 677 (2014).

    Article  Google Scholar 

  8. S. Rubanov, A. Suvorova, V. P. Popov, et al., Diamond Relat. Mater. 63, 143 (2016).

    Article  Google Scholar 

  9. N. N. Andrianova, A. M. Borisov, V. A. Kazakov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9, 346 (2015) https://doi.org/10.1134/S1027451015020251

    Article  Google Scholar 

  10. N. N. Andrianova, A. M. Borisov, V. A. Kazakov, et al., Bull. Russ. Acad. Sci.: Phys. 80, 156 (2016). https://doi.org/10.3103/S1062873816020040

    Article  Google Scholar 

  11. V. A. Anikin, A. M. Borisov, V. A. Kazakov, et al., J. Phys.: Conf. Ser. 747, 012025 (2016).

    Google Scholar 

  12. A. M. Borisov, V. A. Kazakov, E. S. Mashkova, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 406, 676 (2017).

    Google Scholar 

  13. V. A. Anikin, A. M. Borisov, V. A. Kazakov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11, 1185 (2017). https://doi.org/10.1134/S102745101706026X

    Article  Google Scholar 

  14. A. M. Borisov, V. A. Kazakov, E. S. Mashkova, et al., Vacuum 148, 195 (2018).

    Article  Google Scholar 

  15. R. A. Khmelnitsky and A. A. Gippius, Phase Transitions 87 (2), 175 (2014).

    Article  Google Scholar 

  16. S. Sato and M. Iwaki, Nucl. Instrum. Methods Phys. Res., Sect. B 32, 145 (1988).

    Google Scholar 

  17. J. F. Prins and T. E. Derry, Nucl. Instrum. Methods Phys. Res., Sect. B 166–167, 364 (2000).

    Google Scholar 

  18. M. W. Thompson, Defects and Radiation Damage in Metals (Cambridge University Press, Cambridge, 1974).

    Google Scholar 

  19. P. Ehrhart, W. Schilling, and H. Ullmaier, in Encyclopedia of Applied Physics, Vol. 15: Polymerization and Polymer Reaction to Radioactivity, Ed. by G. L. Trigg (VCH, Weinheim, 1996), p. 429

  20. A. R. Chelyadinskii and F. F. Komarov, Usp. Fiz. Nauk 173 (8), 813 (2003).

    Article  Google Scholar 

  21. L. H. Willems van Beveren, R. Liu, H. Bowers, et al., J. Appl. Phys. 119, 223902 (2016). https://doi.org/10.1063/1.4953583

    Article  Google Scholar 

  22. T. E. Derry and J. P. F. Sellschop, Nucl. Instrum. Methods Phys. Res., Sect. B 191, 23 (1981).

    Google Scholar 

  23. E. S. Mashkova and V. A. Molchanov, Medium-Energy Ion Reflection from Solids (North-Holland, Amsterdam, 1985).

    Google Scholar 

  24. V. G. Nagornyi, A. S. Kotosonov, B. S. Ostrovskii, et al., Properties of Carbon-Based Structure Materials, Ed. by V. P. Sosedov (Metallurgiya, Moscow, 1975) [in Russian].

    Google Scholar 

  25. J. F. Ziegler and J. P. Biersack, SRIM, 2013. http://www.srim.org.

  26. V. A. Anikin, A. M. Borisov, V. A. Kazakov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12, 805 (2018). https://doi.org/10.1134/S1027451018040237

    Google Scholar 

  27. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).

    Article  Google Scholar 

  28. L. C. Feldman and J. W Mayer, Fundamentals of Surface and Thin Film Analysis (North Holland, Elsevier Science Publ., Amsterdam, 1986).

  29. G. Speranza and N. Laidani, Diamond Relat. Mater. 13, 445 (2004).

    Article  Google Scholar 

  30. G. Speranza and N. Laidani, Diamond Relat. Mater. 13, 451 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Borisov.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, A.M., Kazakov, V.A., Mashkova, E.S. et al. On the Dynamic Annealing of Ion-Induced Radiation Damage in Diamond under Irradiation at Elevated Temperatures. J. Surf. Investig. 13, 306–313 (2019). https://doi.org/10.1134/S1027451019020265

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019020265

Keywords:

Navigation