Skip to main content
Log in

Near-Field Defects Imaging in Thin DLC Coatings Using High-Frequency Scanning Acoustic Microscopy

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A high-frequency scanning acoustic microscope (SAM) operating at 1–1.3 GHz was used to investigate subsurface defects in diamond-like carbon (DLC) films that were 2–3 μm thick. Because the wavelength of the longitudinal wave in the film was comparable to the film thickness, the acoustical images obtained were near-field images. To interpret the features in the acoustical images, a multidisciplinary approach was utilized through a combination of SAM with atomic force microscopy (AFM), a focused ion beam (FIB) technique, and optical microscopy. Simulations based on the rigorous theoretical approach better predict the depth of the defect than the ray optical approach. It is shown that scattering of the shear waves by subsurface defects is responsible for the acoustical contrast of the cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. Vetter, Surf. Coat. Technol. 257, 213 (2014).

    Article  Google Scholar 

  2. A. Dorner-Reisel, R. Lieberwirth, S. Svoboda, K. Günther, C. Röder, C. Himcinschi, G. Irmer, and S. Weißmantel, Diamond Relat. Mater. 44, 78 (2014).

    Article  Google Scholar 

  3. S. V. Hainsworth and N. J. Uhure, Int. Mater. Rev. 52, 153 (2007)

    Article  Google Scholar 

  4. A. Igartua, E. Berriozabal, R. Nevshupa, E. Roman, F. Pagano, L. P. Nielsen, S. Louring, and L. Muntada, Tribol. Int. 114, 192 (2017).

    Article  Google Scholar 

  5. R. A. Lemons and C. F. Quate, in Physical Acoustics, Ed. by W. P. Mason and R. N. Thurston (Academic, New York, 1979), Vol. 14, p. 1.

    Google Scholar 

  6. J. F. Yin, Q. Bai, and B. Zhang, Chin. J. Mech. Eng. 31, 14 (2018).

    Article  Google Scholar 

  7. S. Brand and F. Altmann, IEEE Trans. Compon., Packag., Manuf. Technol. 8, 735 (2018).

    Google Scholar 

  8. P. V. Zinin, W. Arnold, W. Weise, and S. Berezina, in Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization, Ed. by T. Kundu (Taylor and Francis, Boca Raton, 2012), p. 612.

    Google Scholar 

  9. O. I. Lobkis, T. Kundu, and P. V. Zinin, Wave Motion 21, 183 (1995).

    Article  Google Scholar 

  10. K. Bernland, B. Köhler, P. V. Zinin, D. Fei, and D. A. Rebinsky, Diamond Relat. Mater. 15, 1405 (2006).

    Article  Google Scholar 

  11. P. V. Zinin and W. Weise, in Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization, Ed. by T. Kundu (CRC, Boca Raton, 2004), p. 654.

    Google Scholar 

  12. A. Basarab, D. Rohrbach, N. N. Zhao, J. Y. Tourneret, D. Kouame, and J. Mamou, in 2017IEEE 14th Int. Symposium on Biomedical Imaging (IEEE, New York, 2017), p. 827.

  13. A. Briggs, Acoustic Microscopy (Clarendon, Oxford, 1992).

    Google Scholar 

  14. P. V. Zinin, in Modern Acoustical Techniques for the Measurement of Mechanical Properties, Ed. by M. Levy and H. E. Bass (Academic, New York, 2001), Vol. 39, p. 135.

    Google Scholar 

  15. D. Knaus, T. Zhai, G. A. D. Briggs, and M. J. M., in Advances in Acoustic Microscopy, Ed. by A. Briggs (Plenum, New York, 1995), Vol. 1, p. 49.

    Google Scholar 

  16. R. S. Gilmore, in Physical Acoustics, Ed. by R. N. Thurston, A. D. Pierce, and E. Papadakis (Academic, New York, 1999), Vol. 24, p. 275.

    Google Scholar 

  17. O. Lobkis, T. Kundu, and P. Zinin, in Acoustical Imaging, Ed. by J. P. Jones (Plenum, New York, 1994), Vol. 21.

    Google Scholar 

  18. O. I. Lobkis, K. I. Maslov, T. Kundu, and P. V. Zinin, in Review of Progress in Quantitative Nondestructive Evaluation, Ed. by D. O. Thompson and D. E. Chimenti (Plenum, New York, 1994), Vol. 14A, p. 123.

  19. O. I. Lobkis, K. I. Maslov, T. Kundu, and P. V. Zinin, J. Acoust. Soc. Am. 99, 33 (1996).

    Article  Google Scholar 

  20. P. Zinin, W. Weise, O. Lobkis, and S. Boseck, Wave Motion 25, 213 (1997).

    Article  Google Scholar 

  21. P. Zinin, W. Weise, O. Lobkis, O. Kolosov, and S. Boseck, Optik 98, 45 (1994).

    Google Scholar 

  22. A. Atalar, IEEE Trans. Sonics Ultrason. 32, 164 (1985).

    Article  Google Scholar 

  23. J. Chen, X. L. Bai, K. J. Yang, and B. F. Ju, Ultrasonics 56, 505 (2015).

    Article  Google Scholar 

  24. S. Berezina, P. V. Zinin, D. Schneider, D. Fei, and D. A. Rebinsky, Ultrasonics 43, 85 (2004).

    Article  Google Scholar 

  25. W. Weise, P. Zinin, A. Briggs, T. Wilson, and S. Boseck, J. Acoust. Soc. Am. 104, 181 (1998).

    Article  Google Scholar 

  26. R. Herzer, S. Pangraz, H. Simon, and W. Arnold, in Acoustical Imaging, Ed. by G. Wade and H. Lee (Plenum, New York, 1990), Vol. 18, p. 189.

    Google Scholar 

  27. V. M. Levin, Y. S. Petronyuk, B. E. S. Morokov, A. Celzard, S. Bellucci, and P. P. Kuzhir, in Proc. 2015 ICU Int. Congress on Ultrasonics, Ed. by N. F. Declercq (Elsevier, Amsterdam, 2015), Vol. 70, p. 703.

  28. V. Levin, Y. Petronyuk, E. Morokov, L. Chernozatonskii, P. Kuzhir, V. Fierro, A. Celzard, M. Mastrucci, I. Tabacchioni, S. Bistarelli, and S. Bellucci, Phys. Status Solidi B 253, 1952 (2016).

    Article  Google Scholar 

  29. C. Miyasaka, B. R. Tittmann, and M. Ohno, Res. Nondestr. Eval. 11, 97 (1999).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Sofia Berezina for her help in conducting SAM imaging.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. V. Zinin, I. B. Kutuza or S. A. Titov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinin, P.V., Kutuza, I.B. & Titov, S.A. Near-Field Defects Imaging in Thin DLC Coatings Using High-Frequency Scanning Acoustic Microscopy. J. Surf. Investig. 12, 1285–1293 (2018). https://doi.org/10.1134/S1027451018050737

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451018050737

Keywords:

Navigation