Skip to main content

Near Edge X-Ray Absorption Fine Structure Spectroscopy: A Powerful Tool for Investigating the Surface Structure and Chemistry of Solid Lubricants

  • Chapter
  • First Online:
Advanced Analytical Methods in Tribology

Part of the book series: Microtechnology and MEMS ((MEMS))

Abstract

Synchrotron -based spectroscopic techniques have been critical tools for developing a better understanding of the structure and properties of materials and material surfaces as well as their evolution in response to energetics inputs, such as mechanical strains present in tribological contacts. Among these techniques, near edge X-ray absorption fine structure (NEXAFS) spectroscopy is one of the most powerful tools thanks to its elemental specificity, surface sensitivity, and ability to provide important information about local bonding configurations, such as hybridization, chemical states, and bond orientations. In addition, when coupled with imaging methods like photoemission electron microscopy and magnetically-guided imaging, NEXAFS spectroscopy enables chemical imaging of materials with high spatial resolution. This capability can be critical when investigating materials after tribological experiments, where chemical changes and structural transformations occur in the first few atomic layers and spatial inhomogeneities can be present across small length scales. The present contribution first describes the principles of NEXAFS spectroscopy, followed by experimental methods for the acquisition and processing of NEXAFS data. Finally, the potential of this analytical method for fundamental and applied research in tribology is demonstrated by discussing case studies in the area of solid lubricating carbon-based thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.G. Sawyer, K.J. Wahl, Accessing inaccessible interfaces. In Situ Approaches Mater. Tribol. MRS Bull. 33, 1145–1150 (2008)

    Google Scholar 

  2. W.G. Sawyer, N. Argibay, D.L. Burris, B.A. Krick, Mechanistic studies in friction and wear of bulk materials. Annu. Rev. Mater. Res. 44(1), 395–427 (2014)

    Article  Google Scholar 

  3. C. Donnet, in Problem-Solving Methods in Tribology with Surface-Specific Techniques, ed. by J.C. Rivière, S. Myhra. Handbook of Surface and Interface Analysis: Methods and Problem-Solving, 2nd edn. (CRC Press, Taylor & Francis Group: Boca Raton, FL, 2009), pp. 351–388

    Google Scholar 

  4. S. Mobilio, F. Boscherini, C. Meneghini (eds.), Synchrotron Radiation: Basics, Methods and Applications. Springer (2015)

    Google Scholar 

  5. J. Stöhr, NEXAFS Spectroscopy. Springer (1992)

    Google Scholar 

  6. A. Balerna, S. Mobilio, in Introduction to Synchrotron Radiation, ed. by S. Mobilio, F. Boscherini, C. Meneghini. Synchrotron Radiation: Basics, Methods and Applications (Springer, Berlin Heidelberg, 2015), pp. 3–28

    Google Scholar 

  7. B.K. Agarwal, X-ray Spectroscopy. Springer (1991)

    Google Scholar 

  8. D.C. Koningsberger, R. Prins, X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES (Wiley, New York, 1988)

    Google Scholar 

  9. P. Fornasini, in Introduction to X-Ray Absorption Spectroscopy, ed. by S. Mobilio, F. Boscherini, C. Meneghini. Synchrotron Radiation: Basics, Methods and Applications (Springer, Berlin, Heidelberg, 2015), pp. 181–211

    Google Scholar 

  10. G. Bunker, Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy (Cambridge University Press, Cambridge, UK; New York, 2010)

    Book  Google Scholar 

  11. P.A. Lee, G. Beni, New method for the calculation of atomic phase shifts: application to extended X-ray absorption fine structure (EXAFS) in molecules and crystals. Phys. Rev. B 15(6), 2862–2883 (1977)

    Article  CAS  Google Scholar 

  12. S. Gurman, Interpretation of EXAFS data. J. Synchrotron Radiat. 2(1), 56–63 (1995)

    Article  CAS  Google Scholar 

  13. B.K. Teo, EXAFS: Basic Principles and Data Analysis. Springer (1986)

    Google Scholar 

  14. S. Anders, H.A. Padmore, R.M. Duarte, T. Renner, T. Stammler, A. Scholl et al., Photoemission electron microscope for the study of magnetic materials. Rev. Sci. Instrum. 70(10), 3973–3981 (1999)

    Article  CAS  Google Scholar 

  15. E. Bauer, M. Mundschau, W. Swiech, W. Telieps, Surface studies by low-energy electron microscopy (LEEM) and conventional UV photoemission electron microscopy (PEEM). Ultramicroscopy 31(1), 49–57 (1989)

    Article  CAS  Google Scholar 

  16. W. Engel, M.E. Kordesch, H.H. Rotermund, S. Kubala, A. von Oertzen, A UHV-compatible photoelectron emission microscope for applications in surface science. Ultramicroscopy 36(1–3), 148–153 (1991)

    Article  Google Scholar 

  17. O. Renault, N. Barrett, A. Bailly, L.F. Zagonel, D. Mariolle, J.C. Cezar et al., Energy-filtered XPEEM with NanoESCA using synchrotron and laboratory X-ray sources: principles and first demonstrated results. Surf. Sci. 601(20), 4727–4732 (2007)

    Article  CAS  Google Scholar 

  18. A. Konicek, C. Jaye, M. Hamilton, W. Sawyer, D. Fischer, R. Carpick, Near-edge X-ray absorption fine structure imaging of spherical and flat counterfaces of ultrananocrystalline diamond tribological contacts: a correlation of surface chemistry and friction. Tribol. Lett. 44(1), 99–106 (2011)

    Article  CAS  Google Scholar 

  19. M. Nicholls, M.N. Najman, Z. Zhang, M. Kasrai, P.R. Norton, P.U.P.A. Gilbert, The contribution of XANES spectroscopy to tribology. Can. J. Chem. 85(10), 816–830 (2007)

    Article  CAS  Google Scholar 

  20. A.R. Konicek, D.S. Grierson, P.U.P.A. Gilbert, W.G. Sawyer, A.V. Sumant, R.W. Carpick, Origin of ultralow friction and wear in ultrananocrystalline diamond. Phys. Rev. Lett. 100(23), 235502 (2008)

    Article  CAS  Google Scholar 

  21. R. Lindsay, G. Thornton, Structure of atomic and molecular adsorbates on Low-Miller-Index ZnO surfaces using X-ray absorption spectroscopy. Top. Catal. 18(1–2), 15–19 (2002)

    Article  CAS  Google Scholar 

  22. M. Bauer, C. Gastl, X-Ray absorption in homogeneous catalysis research: the iron-catalyzed Michael addition reaction by XAS, RIXS and multi-dimensional spectroscopy. Phys. Chem. Chem. Phys. 12(21), 5575–5584 (2010)

    Article  CAS  Google Scholar 

  23. D.E. Ramaker, D.C. Koningsberger, The atomic AXAFS and Δμ XANES techniques as applied to heterogeneous catalysis and electrocatalysis. Phys. Chem. Chem. Phys. 12(21), 5514–5534 (2010)

    Article  CAS  Google Scholar 

  24. J.B. MacNaughton, L.-A. Naslund, T. Anniyev, H. Ogasawara, A. Nilsson, Peroxide-like intermediate observed at hydrogen rich condition on Pt(111) after interaction with oxygen. Phys. Chem. Chem. Phys. 12(21), 5712–5716 (2010)

    Article  CAS  Google Scholar 

  25. T. Anniyev, H. Ogasawara, M.P. Ljungberg, K.T. Wikfeldt, J.B. MacNaughton, L.-A. Naslund et al., Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts. Phys. Chem. Chem. Phys. 12(21), 5694–5700 (2010)

    Article  CAS  Google Scholar 

  26. J. Genzer, E.J. Kramer, D.A. Fischer, Accounting for Auger yield energy loss for improved determination of molecular orientation using soft x-ray absorption spectroscopy. J. Appl. Phys. 92(12), 7070–7079 (2002)

    Article  CAS  Google Scholar 

  27. M. Gliboff, L. Sang, K.M. Knesting, M.C. Schalnat, A. Mudalige, E.L. Ratcliff et al., Orientation of phenylphosphonic acid self-assembled monolayers on a transparent conductive oxide: a combined NEXAFS, PM-IRRAS, and DFT study. Langmuir 29(7), 2166–2174 (2013)

    Article  CAS  Google Scholar 

  28. F. Cheng, L.J. Gamble, D.G. Castner, XPS, TOF-SIMS, NEXAFS, and SPR characterization of nitrilotriacetic acid-terminated self-assembled monolayers for controllable immobilization of proteins. Anal. Chem. 80(7), 2564–2573 (2008)

    Article  CAS  Google Scholar 

  29. S. Turgman-Cohen, D.A. Fischer, P.K. Kilpatrick, J. Genzer, Asphaltene adsorption onto self-assembled monolayers of alkyltrichlorosilanes of varying chain length. ACS Appl. Mater. Interfaces 1(6), 1347–1357 (2009)

    Article  CAS  Google Scholar 

  30. T. Hemraj-Benny, S. Banerjee, S. Sambasivan, M. Balasubramanian, D.A. Fischer, G. Eres et al., Near-edge X-ray absorption fine structure spectroscopy as a tool for investigating nanomaterials. Small 2(1), 26–35 (2006)

    Article  CAS  Google Scholar 

  31. A.D. Winter, E. Larios, F.M. Alamgir, C. Jaye, D. Fischer, E.M. Campo, Near-edge X-ray absorption fine structure studies of electrospun poly(dimethylsiloxane)/poly(methyl methacrylate)/multiwall carbon nanotube composites. Langmuir 29(51), 15822–15830 (2013)

    Article  CAS  Google Scholar 

  32. T. Breuer, G. Witte, Diffusion-controlled growth of molecular heterostructures: fabrication of two-, one-, and zero-dimensional C60 nanostructures on pentacene substrates. ACS Appl. Mater. Interfaces 5(19), 9740–9745 (2013)

    Article  CAS  Google Scholar 

  33. H.-J. Lee, K.-S. Lee, J.-M. Cho, T.-S. Lee, I. Kim, D.S. Jeong et al., Novel aspect in grain size control of nanocrystalline diamond film for thin film waveguide mode resonance sensor application. ACS Appl. Mater. Interfaces 5(22), 11631–11640 (2013)

    Article  CAS  Google Scholar 

  34. Y.S. Li, Y. Tang, Q. Yang, J. Maley, R. Sammynaiken, T. Regier et al., Ultrathin W–Al dual interlayer approach to depositing smooth and adherent nanocrystalline diamond films on stainless steel. ACS Appl. Mater. Interfaces 2(2), 335–338 (2010)

    Article  CAS  Google Scholar 

  35. K.J. Sankaran, Y.-F. Lin, W.-B. Jian, H.-C. Chen, K. Panda, B. Sundaravel et al., Structural and electrical properties of conducting diamond nanowires. ACS Appl. Mater. Interfaces 5(4), 1294–1301 (2013)

    Article  CAS  Google Scholar 

  36. A. Saravanan, B.-R. Huang, K.J. Sankaran, S. Kunuku, C.-L. Dong, K.-C. Leou et al., Bias-enhanced nucleation and growth processes for ultrananocrystalline diamond films in Ar/CH4 plasma and their enhanced plasma illumination properties. ACS Appl. Mater. Interfaces 6(13), 10566–10575 (2014)

    Article  CAS  Google Scholar 

  37. W.S. Yeap, X. Liu, D. Bevk, A. Pasquarelli, L. Lutsen, M. Fahlman et al., Functionalization of boron-doped nanocrystalline diamond with N3 dye molecules. ACS Appl. Mater. Interfaces 6(13), 10322–10329 (2014)

    Article  CAS  Google Scholar 

  38. S. Zhong, J.Q. Zhong, H.Y. Mao, R. Wang, Y. Wang, D.C. Qi et al., CVD graphene as interfacial layer to engineer the organic donor-acceptor heterojunction interface properties. ACS Appl. Mater. Interfaces 4(6), 3134–3140 (2012)

    Article  CAS  Google Scholar 

  39. J. Kikuma, B.P. Tonner, XANES spectra of a variety of widely used organic polymers at the C K-edge. J. Electron Spectrosc. Relat. Phenom. 82(1–2), 53–60 (1996)

    Article  CAS  Google Scholar 

  40. B. Watts, S. Swaraj, D. Nordlund, J. Luning, H. Ade, Calibrated NEXAFS spectra of common conjugated polymers. J. Chem. Phys. 134(2), 024702 (2011)

    Article  CAS  Google Scholar 

  41. H. Ade, A.P. Hitchcock, NEXAFS microscopy and resonant scattering: composition and orientation probed in real and reciprocal space. Polymer 49(3), 643–675 (2008)

    Article  CAS  Google Scholar 

  42. D. Park, J.A. Finlay, R.J. Ward, C.J. Weinman, S. Krishnan, M. Paik et al., Antimicrobial behavior of semifluorinated-quaternized triblock copolymers against airborne and marine microorganisms. ACS Appl. Mater. Interfaces 2(3), 703–711 (2010)

    Article  CAS  Google Scholar 

  43. H.S. Sundaram, Y. Cho, M.D. Dimitriou, J.A. Finlay, G. Cone, S. Williams et al., Fluorinated amphiphilic polymers and their blends for fouling-release applications: the benefits of a triblock copolymer surface. ACS Appl. Mater. Interfaces 3(9), 3366–3374 (2011)

    Article  CAS  Google Scholar 

  44. A.F. Tillack, K.M. Noone, B.A. MacLeod, D. Nordlund, K.P. Nagle, J.A. Bradley et al., Surface characterization of polythiophene: fullerene blends on different electrodes using near edge X-ray absorption fine structure. ACS Appl. Mater. Interfaces 3(3), 726–732 (2011)

    Article  CAS  Google Scholar 

  45. S.P. Cramer, T.K. Eccles, F.W. Kutzler, K.O. Hodgson, L.E. Mortenson, Molybdenum x-ray absorption edge spectra. The chemical state of molybdenum in nitrogenase. J. Am. Chem. Soc. 98(5), 1287–1288 (1976)

    Article  CAS  Google Scholar 

  46. G. Meitzner, G.H. Via, F.W. Lytle, J.H. Sinfelt, Analysis of x-ray absorption edge data on metal catalysts. J. Phys. Chem. 96(12), 4960–4964 (1992)

    Article  CAS  Google Scholar 

  47. D.H. Pearson, C.C. Ahn, B. Fultz, White lines and d-electron occupancies for the 3d and 4d transition metals. Phys. Rev. B 47(14), 8471–8478 (1993)

    Article  CAS  Google Scholar 

  48. D. Hübner, F. Holch, M.L.M. Rocco, K.C. Prince, S. Stranges, A. Schöll et al., Isotope effects in high-resolution NEXAFS spectra of naphthalene. Chem. Phys. Lett. 415(1–3), 188–192 (2005)

    Article  CAS  Google Scholar 

  49. A.P. Hitchcock, C.E. Brion, K-shell excitation of HF and F2 studied by electron energy-loss spectroscopy. J. Phys. B: At. Mol. Phys. 14(22), 4399–4413 (1981)

    Article  CAS  Google Scholar 

  50. F. Sette, J. Stöhr, A.P. Hitchcock, Determination of intramolecular bond lengths in gas phase molecules from K shell shape resonances. J. Chem. Phys. 81(11), 4906–4914 (1984)

    Article  CAS  Google Scholar 

  51. J.S. Stevens, A. Gainar, E. Suljoti, J. Xiao, R. Golnak, E.F. Aziz et al., Chemical speciation and bond lengths of organic solutes by core-level spectroscopy: ph and solvent influence on p-aminobenzoic acid. Chemistry 21(19), 7256–7263 (2015)

    Article  CAS  Google Scholar 

  52. J. Stöhr, F. Sette, A.L. Johnson, Near-edge X-ray-absorption fine-structure studies of chemisorbed hydrocarbons: bond lengths with a ruler. Phys. Rev. Lett. 53(17), 1684–1687 (1984)

    Article  Google Scholar 

  53. A. Gainar, J.S. Stevens, C. Jaye, D.A. Fischer, S.L. Schroeder, NEXAFS sensitivity to bond lengths in complex molecular materials: a study of crystalline saccharides. J. Phys. Chem. B 119(45), 14373–14381 (2015)

    Article  CAS  Google Scholar 

  54. V.L. Shneerson, D.K. Saldin, W.T. Tysoe, On the dependence with bond lengths of the observed energies of NEXAFS resonances of diatomic molecules. Surf. Sci. 375(2–3), 340–352 (1997)

    Article  CAS  Google Scholar 

  55. N. Haack, G. Ceballos, H. Wende, K. Baberschke, D. Arvanitis, A.L. Ankudinov et al., Shape resonances of oriented molecules: ab initio theory and experiment on hydrocarbon molecules. Phys. Rev. Lett. 84(4), 614–617 (2000)

    Article  CAS  Google Scholar 

  56. D. Arvanitis, N. Haack, G. Ceballos, H. Wende, K. Baberschke, A.L. Ankudinov et al., Shape resonances of oriented molecules. J. Electron Spectrosc. Relat. Phenom. 113(1), 57–65 (2000)

    Article  CAS  Google Scholar 

  57. B. Kempgens, H.M. Köppe, A. Kivimäki, M. Neeb, K. Maier, U. Hergenhahn et al., On the correct identification of shape resonances in NEXAFS. Surf. Sci. 425(1), L376–L380 (1999)

    Article  CAS  Google Scholar 

  58. M.N. Piancastelli, D.W. Lindle, T.A. Ferrett, D.A. Shirley, Reply to the ‘‘Comment on ‘The relationship between shape resonances and bond lengths’’’. J. Chem. Phys. 87(5), 3255 (1987)

    Article  CAS  Google Scholar 

  59. M.N. Piancastelli, D.W. Lindle, T.A. Ferrett, D.A. Shirley, The relationship between shape resonances and bond lengths. J. Chem. Phys. 86(5), 2765–2771 (1987)

    Article  CAS  Google Scholar 

  60. K. Weiss, P.S. Bagus, C. Wöll, Rydberg transitions in X-ray absorption spectroscopy of alkanes: the importance of matrix effects. J. Chem. Phys. 111(15), 6834–6845 (1999)

    Article  CAS  Google Scholar 

  61. S.G. Urquhart, R. Gillies, Rydberg-valence mixing in the carbon 1 s near-edge X-ray absorption fine structure spectra of gaseous alkanes. J. Phys. Chem. A 109(10), 2151–2159 (2005)

    Article  CAS  Google Scholar 

  62. D. Briggs, J.T. Grant (eds.), Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy (IM Publications, Chichester (UK), 2003)

    Google Scholar 

  63. D. Briggs, M.P. Seah (eds.), Practical Surface Analysis (Wiley, New York, 1990)

    Google Scholar 

  64. T. Maruyama, Y. Ishiguro, S. Nartitsuka, W. Norimatsu, M. Kusunoki, K. Amemiya et al., Near-edge X-ray absorption fine structure study of vertically aligned carbon nanotubes grown by the surface decomposition of SiC. Jpn. J. Appl. Phys. 51(Copyright (c) 2012 The Japan Society of Applied Physics), 055102

    Article  Google Scholar 

  65. T. Maruyama, S. Sakakibara, S. Naritsuka, K. Amemiya, Initial stage of carbon nanotube formation process by surface decomposition of SiC: STM and NEXAFS study. Diam. Relat. Mater. 20(10), 1325–1328 (2011)

    Article  CAS  Google Scholar 

  66. G. Margaritondo, in Characteristics and Properties of Synchrotron Radiation, ed. by S. Mobilio, F. Boscherini, C. Meneghini. Synchrotron Radiation: Basics, Methods and Applications (Springer, Berlin, Heidelberg, 2015), pp. 29–63

    Google Scholar 

  67. G. Aquilanti, L. Vaccari, J.R. Plaisier, A. Goldoni, in Instrumentation at Synchrotron Radiation Beamlines, S. Mobilio, F. Boscherini, C. Meneghini. Synchrotron Radiation: Basics, Methods and Applications (Springer, Berlin, Heidelberg, 2015), pp. 65–104

    Google Scholar 

  68. D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (2007)

    Google Scholar 

  69. A. Scholl, H. Ohldag, F. Nolting, J. Stöhr, H.A. Padmore, X-ray photoemission electron microscopy, a tool for the investigation of complex magnetic structures (invited). Rev. Sci. Instrum. 73(3), 1362 (2002)

    Article  CAS  Google Scholar 

  70. T. Schmidt, A. Sala, H. Marchetto, E. Umbach, H.J. Freund, First experimental proof for aberration correction in XPEEM: resolution, transmission enhancement, and limitation by space charge effects. Ultramicroscopy 126, 23–32 (2013)

    Article  CAS  Google Scholar 

  71. E. Bauer, Surface Microscopy with Low Energy Electrons (Springer, New York, 2014)

    Book  Google Scholar 

  72. B.H. Frazer, M. Girasole, L.M. Wiese, T. Franz, G. De Stasio, Spectromicroscope for the Photoelectron imaging of nanostructures with X-rays (SPHINX): performance in biology, medicine and geology. Ultramicroscopy 99(2–3), 87–94 (2004)

    Article  CAS  Google Scholar 

  73. J. Feng, A. Scholl, in Photoemission Electron Microscopy (PEEM), ed. by P.W. Hawkes, J.C.H. Spence. Science of Microscopy (Springer, New York, NY, 2007), pp. 657–695

    Google Scholar 

  74. G. De Stasio, M. Capozi, G.F. Lorusso, P.A. Baudat, T.C. Droubay, P. Perfetti et al., MEPHISTO: performance tests of a novel synchrotron imaging photoelectron spectromicroscope. Rev. Sci. Instrum. 69(5), 2062–2066 (1998)

    Article  Google Scholar 

  75. G. De Stasio, L. Perfetti, B. Gilbert, O. Fauchoux, M. Capozi, P. Perfetti et al., MEPHISTO spectromicroscope reaches 20 nm lateral resolution. Rev. Sci. Instrum. 70(3), 1740–1742 (1999)

    Article  Google Scholar 

  76. B.P. Tonner, G.R. Harp, Photoelectron microscopy with synchrotron radiation. Rev. Sci. Instrum. 59(6), 853–858 (1988)

    Article  CAS  Google Scholar 

  77. A.V. Sumant, D.S. Grierson, J.E. Gerbi, J. Birrell, U.D. Lanke, O. Auciello et al., Toward the ultimate tribological interface: surface chemistry and nanotribology of ultrananocrystalline diamond. Adv. Mater. 17(8), 1039–1045 (2005)

    Article  CAS  Google Scholar 

  78. S. Anders, T. Stammler, W. Fong, D.B. Bogy, C.S. Bhatia, J. Stöhr, Investigation of slider surfaces after wear using photoemission electron microscopy. J. Vac. Sci. Technol. A: Vac. Surf. Films 17(5), 2731–2736 (1999)

    Article  CAS  Google Scholar 

  79. S. Anders, T. Stammler, W. Fong, C.-Y. Chen, D.B. Bogy, C.S. Bhatia et al., Study of tribochemical processes on hard disks using photoemission electron microscopy. J. Tribol. 121(4), 961–967 (1999)

    Article  CAS  Google Scholar 

  80. A.V. Sumant, P.U.P.A. Gilbert, D.S. Grierson, A.R. Konicek, M. Abrecht, J.E. Butler et al., Surface composition, bonding, and morphology in the nucleation and growth of ultra-thin, high quality nanocrystalline diamond films. Diam. Relat. Mater. 16(4–7), 718–724 (2007)

    Article  CAS  Google Scholar 

  81. D.S. Grierson, A.V. Sumant, A.R. Konicek, M. Abrecht, J. Birrell, O. Auciello et al., Tribochemistry and material transfer for the ultrananocrystalline diamond-silicon nitride interface revealed by x-ray photoelectron emission spectromicroscopy. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 25(5), 1700–1705 (2007)

    Article  CAS  Google Scholar 

  82. A.R. Konicek, D.S. Grierson, A.V. Sumant, T.A. Friedmann, J.P. Sullivan, P.U.P.A. Gilbert et al., Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films. Phys. Rev. B 85(15), 155448 (2012)

    Article  CAS  Google Scholar 

  83. C.M. Schneider, G. Schönhense, Investigating surface magnetism by means of photoexcitation electron emission microscopy. Rep. Prog. Phys. 65(12), 1785 (2002)

    Article  Google Scholar 

  84. M.R. Freeman, B.C. Choi, Advances in magnetic microscopy. Science 294(5546), 1484 (2001)

    Article  CAS  Google Scholar 

  85. F. Nolting, A. Scholl, J. Stöhr, J.W. Seo, J. Fompeyrine, H. Siegwart et al., Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. Nature 405(6788), 767–769 (2000)

    Article  CAS  Google Scholar 

  86. M. Kim, M. Bertram, M. Pollmann, Oertzen Av, A.S. Mikhailov, H.H. Rotermund et al., Controlling chemical turbulence by global delayed feedback: pattern formation in catalytic CO oxidation on Pt(110). Science 292(5520), 1357 (2001)

    Article  CAS  Google Scholar 

  87. S. Aggarwal, A.P. Monga, S.R. Perusse, R. Ramesh, V. Ballarotto, E.D. Williams et al., Spontaneous ordering of oxide nanostructures. Science 287(5461), 2235 (2000)

    Article  CAS  Google Scholar 

  88. F.-J. Meyer zu Heringdorf, M.C. Reuter, R.M. Tromp, Growth dynamics of pentacene thin films. Nature 412(6846), 517–520 (2001)

    Article  CAS  Google Scholar 

  89. C. Morin, H. Ikeura-Sekiguchi, T. Tyliszczak, R. Cornelius, J.L. Brash, A.P. Hitchcock et al., X-ray spectromicroscopy of immiscible polymer blends: polystyrene–poly(methyl methacrylate). J. Electron Spectrosc. Relat. Phenom. 121(1–3), 203–224 (2001)

    Article  CAS  Google Scholar 

  90. H. Ade, D.A. Winesett, A.P. Smith, S. Anders, T. Stammler, C. Heske et al., Bulk and surface characterization of a dewetting thin film polymer bilayer. Appl. Phys. Lett. 73(25), 3775–3777 (1998)

    Article  CAS  Google Scholar 

  91. G. De Stasio, P. Casalbore, R. Pallini, B. Gilbert, F. Sanità, M.T. Ciotti et al., Gadolinium in human glioblastoma cells for gadolinium neutron capture therapy. Can. Res. 61(10), 4272 (2001)

    Google Scholar 

  92. G. De Stasio, B.H. Frazer, B. Gilbert, K.L. Richter, J.W. Valley, Compensation of charging in X-PEEM: a successful test on mineral inclusions in 4.4 Ga old zircon. Ultramicroscopy 98(1), 57–62 (2003)

    Article  CAS  Google Scholar 

  93. M. Labrenz, G.K. Druschel, T. Thomsen-Ebert, B. Gilbert, S.A. Welch, K.M. Kemner et al., Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290(5497), 1744 (2000)

    Article  CAS  Google Scholar 

  94. B. Gilbert, R. Andres, P. Perfetti, G. Margaritondo, G. Rempfer, G. De Stasio, Charging phenomena in PEEM imaging and spectroscopy. Ultramicroscopy 83(1–2), 129–139 (2000)

    Article  CAS  Google Scholar 

  95. A. Locatelli, E. Bauer, Recent advances in chemical and magnetic imaging of surfaces and interfaces by XPEEM. J. Phys.: Condens. Matter 20(9), 093002 (2008)

    Google Scholar 

  96. C. Wiemann, M. Patt, I.P. Krug, N.B. Weber, M. Escher, M. Merkel et al., A new nanospectroscopy tool with synchrotron radiation: NanoESCA@Elettra. e-J. Surf. Sci. Nanotechnol. 9, 395–399 (2011)

    Article  Google Scholar 

  97. J.E. Baio, C. Jaye, D.A. Fischer, T. Weidner, Multiplexed orientation and structure analysis by imaging near-edge X-ray absorption fine structure (MOSAIX) for combinatorial surface science. Anal. Chem. 85(9), 4307–4310 (2013)

    Article  CAS  Google Scholar 

  98. K.D. Koshigan, F. Mangolini, J.B. McClimon, B. Vacher, S. Bec, R.W. Carpick et al., Understanding the hydrogen and oxygen gas pressure dependence of the tribological properties of silicon oxide–doped hydrogenated amorphous carbon coatings. Carbon 93, 851–860 (2015)

    Article  CAS  Google Scholar 

  99. F. Mangolini, J.B. McClimon, F. Rose, R.W. Carpick, Accounting for nanometer-thick adventitious carbon contamination in X-ray absorption spectra of carbon-based materials. Anal. Chem. 86(24), 12258–12265 (2014)

    Article  CAS  Google Scholar 

  100. A. Schöll, Y. Zou, T. Schmidt, R. Fink, E. Umbach, Energy calibration and intensity normalization in high-resolution NEXAFS spectroscopy. J. Electron Spectrosc. Relat. Phenom. 129(1), 1–8 (2003)

    Article  CAS  Google Scholar 

  101. B. Watts, H. Ade, A simple method for determining linear polarization and energy calibration of focused soft X-ray beams. J. Electron Spectrosc. Relat. Phenom. 162(2), 49–55 (2008)

    Article  CAS  Google Scholar 

  102. B. Watts, L. Thomsen, P.C. Dastoor, Methods in carbon K-edge NEXAFS: experiment and analysis. J. Electron Spectrosc. Relat. Phenom. 151(2), 105–120 (2006)

    Article  CAS  Google Scholar 

  103. M. Olla, G. Navarra, B. Elsener, A. Rossi, Nondestructive in-depth composition profile of oxy-hydroxide nanolayers on iron surfaces from ARXPS measurement. Surf. Interface Anal. 38(5), 964–974 (2006)

    Article  CAS  Google Scholar 

  104. M.A. Scorciapino, G. Navarra, B. Elsener, A. Rossi, Nondestructive surface depth profiles from angle-resolved X-ray photoelectron spectroscopy data using the maximum entropy method. I. A New Protocol. J. Phys. Chem. C 113(51), 21328–21337 (2009)

    Article  CAS  Google Scholar 

  105. M. Seah, Ultrathin SiO2 on Si I. quantifying and removing carbonaceous contamination. J. Vac. Sci. Technol. A 21(2), 34 (2003)

    Article  CAS  Google Scholar 

  106. I. Ishii, A.P. Hitchcook, The oscillator strengths for C 1s and O 1s excitation of some saturated and unsaturated organic alcohols, acids and esters. J. Electron Spectrosc. Relat. Phenom. 46(1), 55–84 (1988)

    Article  CAS  Google Scholar 

  107. J.F. Morar, F.J. Himpsel, G. Hollinger, G. Hughes, J.L. Jordan, Observation of a C-1s core exciton in diamond. Phys. Rev. Lett. 54(17), 1960–1963 (1985)

    Article  CAS  Google Scholar 

  108. S.C. Ray, R.M. Erasmus, H. Tsai, M. nbsp, C. Pao et al., Hydrogenation effects of ultrananocrystalline diamond detected by X-ray absorption near edge structure and raman spectroscopy. Jpn. J. Appl. Phys. 51(Copyright (c) 2012 The Japan Society of Applied Physics), 095201

    Article  Google Scholar 

  109. A.V. Sumant, D.S. Grierson, J.E. Gerbi, J.A. Carlisle, O. Auciello, R.W. Carpick, Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces and their effects on nanotribological properties. Phys. Rev. B 76(23), 235429 (2007)

    Article  CAS  Google Scholar 

  110. J. Diaz, S. Anders, X. Zhou, E.J. Moler, S.A. Kellar, Z. Hussain, Combined near edge X-ray absorption fine structure and X-ray photoemission spectroscopies for the study of amorphous carbon thin films. J. Electron Spectrosc. Relat. Phenom. 101–103, 545–550 (1999)

    Article  Google Scholar 

  111. R. Gago, I. Jiménez, J.M. Albella, A. Climent-Font, D. Cáceres, I. Vergara et al., Bonding and hardness in nonhydrogenated carbon films with moderate sp3 content. J. Appl. Phys. 87(11), 8174–8180 (2000)

    Article  CAS  Google Scholar 

  112. D.S. Grierson, A.V. Sumant, A.R. Konicek, T.A. Friedmann, J.P. Sullivan, R.W. Carpick, Thermal stability and rehybridization of carbon bonding in tetrahedral amorphous carbon. J. Appl. Phys. 107(3), 033523–033525 (2010)

    Article  CAS  Google Scholar 

  113. C. Lenardi, P. Piseri, V. Briois, C.E. Bottani, A.L. Bassi, P. Milani, Near-edge x-ray absorption fine structure and Raman characterization of amorphous and nanostructured carbon films. J. Appl. Phys. 85(10), 7159–7167 (1999)

    Article  CAS  Google Scholar 

  114. S.C. Ray, H.M. Tsai, J.W. Chiou, B. Bose, J.C. Jan, K. Krishna et al., X-ray absorption spectroscopy (XAS) study of dip deposited a-C:H(OH) thin films. J. Phys.: Condens. Matter 16(32), 5713 (2004)

    CAS  Google Scholar 

  115. A. Saikubo, N. Yamada, K. Kanda, S. Matsui, T. Suzuki, K. Niihara et al., Comprehensive classification of DLC films formed by various methods using NEXAFS measurement. Diam. Relat. Mater. 17(7–10), 1743–1745 (2008)

    Article  CAS  Google Scholar 

  116. D. Wesner, S. Krummacher, R. Carr, T.K. Sham, M. Strongin, W. Eberhardt et al., Synchrotron-radiation studies of the transition of hydrogenated amorphous carbon to graphitic carbon. Phys. Rev. B 28(4), 2152–2156 (1983)

    Article  CAS  Google Scholar 

  117. J.G. Buijnsters, R. Gago, A. Redondo-Cubero, I. Jimenez, Hydrogen stability in hydrogenated amorphous carbon films with polymer-like and diamond-like structure. J. Appl. Phys. 112(9), 093502–093507 (2012)

    Article  CAS  Google Scholar 

  118. G. Comelli, J. Stöhr, C.J. Robinson, W. Jark, Structural studies of argon-sputtered amorphous carbon films by means of extended x-ray-absorption fine structure. Phys. Rev. B 38(11), 7511–7519 (1988)

    Article  CAS  Google Scholar 

  119. J. Díaz, S. Anders, X. Zhou, E.J. Moler, S.A. Kellar, Z. Hussain, Analysis of the π* and σ* bands of the x-ray absorption spectrum of amorphous carbon. Phys. Rev. B 64(12), 125204 (2001)

    Article  CAS  Google Scholar 

  120. J. Diaz, O.R. Monteiro, Z. Hussain, Structure of amorphous carbon from near-edge and extended x-ray absorption spectroscopy. Phys. Rev. B 76(9), 094201 (2007)

    Article  CAS  Google Scholar 

  121. J. Diaz, G. Paolicelli, S. Ferrer, F. Comin, Separation of the sp3 and sp2 components in the C 1s photoemission spectra of amorphous carbon films. Phys. Rev. B 54(11), 8064–8069 (1996)

    Article  CAS  Google Scholar 

  122. Gago, I. Jiménez, J.M. Albella, Detecting with X-ray absorption spectroscopy the modifications of the bonding structure of graphitic carbon by amorphisation, hydrogenation and nitrogenation. Surf. Sci. 482–485, Part 1: 530–536 (2001)

    Google Scholar 

  123. R. Gago, M. Vinnichenko, H.U. Jäger, A.Y. Belov, I. Jiménez, N. Huang et al., Evolution of sp2 networks with substrate temperature in amorphous carbon films: experiment and theory. Phys. Rev. B 72(1), 014120 (2005)

    Article  CAS  Google Scholar 

  124. H.-S. Jung, H.-H. Park, I.R. Mendieta, D.A. Smith, Determination of bonding structure of Si, Ge, and N incorporated amorphous carbon films by near-edge x-ray absorption fine structure and ultraviolet Raman spectroscopy. J. Appl. Phys. 96(2), 1013–1018 (2004)

    Article  CAS  Google Scholar 

  125. C. Lenardi, E. Barborini, V. Briois, L. Lucarelli, P. Piseri, P. Milani, NEXAFS characterization of nanostructured carbon thin-films exposed to hydrogen. Diam. Relat. Mater. 10(3–7), 1195–1200 (2001)

    Article  CAS  Google Scholar 

  126. C. Lenardi, M. Marino, E. Barborini, P. Piseri, P. Milani, Evaluation of hydrogen chemisorption in nanostructured carbon films by near edge X-ray absorption spectroscopy. Eur. Phys. J. B – Condens. Matter Complex Syst. 46(3), 441–447 (2005)

    Article  CAS  Google Scholar 

  127. O.R. Monteiro, M.-P. Delplancke-Ogletree, Investigation of non-hydrogenated DLC: Si prepared by cathodic arc. Surf. Coat. Technol. 163–164, 144–148 (2003)

    Article  Google Scholar 

  128. V. Palshin, R. Tittsworth, C. Fountzoulas, E. Meletis, X-ray absorption spectroscopy, simulation and modeling of Si-DLC films. J. Mater. Sci. 37(8), 1535–1539 (2002)

    Article  CAS  Google Scholar 

  129. B.J. Schultz, C.J. Patridge, V. Lee, C. Jaye, P.S. Lysaght, C. Smith et al., Imaging local electronic corrugations and doped regions in graphene. Nat. Commun. 2, 372 (2011)

    Article  CAS  Google Scholar 

  130. D. Pacilé, M. Papagno, A.F. Rodríguez, M. Grioni, L. Papagno, Ç.Ö. Girit et al., Near-edge X-ray absorption fine-structure investigation of graphene. Phys. Rev. Lett. 101(6), 066806 (2008)

    Article  CAS  Google Scholar 

  131. S. Banerjee, T. Hemraj-Benny, M. Balasubramanian, D.A. Fischer, J.A. Misewich, S.S. Wong, Ozonized single-walled carbon nanotubes investigated using NEXAFS spectroscopy. Chem. Commun. 7, 772–773 (2004)

    Article  CAS  Google Scholar 

  132. S. Banerjee, T. Hemraj-Benny, S. Sambasivan, D.A. Fischer, J.A. Misewich, S.S. Wong, Near-edge X-ray absorption fine structure investigations of order in carbon nanotube-based systems†. J. Phys. Chem. B 109(17), 8489–8495 (2005)

    Article  CAS  Google Scholar 

  133. D.A. Fischer, K. Efimenko, R.R. Bhat, S. Sambasivan, J. Genzer, Mapping surface chemistry and molecular orientation with combinatorial near-edge X-ray absorption fine structure spectroscopy. Macromol. Rapid Commun. 25(1), 141–149 (2004)

    Article  CAS  Google Scholar 

  134. F. Mangolini, F. Rose, J. Hilbert, R.W. Carpick, Thermally induced evolution of hydrogenated amorphous carbon. Appl. Phys. Lett. 103(16), 161605 (2013)

    Article  CAS  Google Scholar 

  135. P.E. Batson, Carbon 1s near-edge-absorption fine structure in graphite. Phys. Rev. B 48(4), 2608–2610 (1993)

    Article  CAS  Google Scholar 

  136. A. Wada, T. Ogaki, M. Niibe, M. Tagawa, H. Saitoh, K. Kanda et al., Local structural analysis of a-SiCx: H films formed by decomposition of tetramethylsilane in microwave discharge flow of Ar. Diam. Relat. Mater. 20(3), 364–367 (2011)

    Article  CAS  Google Scholar 

  137. F. Mangolini, J.B. McClimon, R.W. Carpick, Quantitative evaluation of the carbon hybridization state by near edge X-ray absorption fine structure spectroscopy. Anal. Chem. 88(5), 2817–2824 (2016)

    Article  CAS  Google Scholar 

  138. J. Robertson, Diamond-like amorphous carbon. Mater. Sci. Eng.: R: Rep. 37(4–6), 129–281 (2002)

    Article  Google Scholar 

  139. S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi, Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128(35), 11635–11642 (2006)

    Article  CAS  Google Scholar 

  140. F.L. Coffman, R. Cao, P.A. Pianetta, S. Kapoor, M. Kelly, L.J. Terminello, Near-edge X-ray absorption of carbon materials for determining bond hybridization in mixed sp2/sp3 bonded materials. Appl. Phys. Lett. 69(4), 568–570 (1996)

    Article  CAS  Google Scholar 

  141. F. Mangolini, J. Hilbert, J.B. McClimon, J.R. Lukes, R.W. Carpick, Thermally induced structural evolution of silicon- and oxygen-containing hydrogenated amorphous carbon: a combined spectroscopic and molecular dynamics simulation investigation. Langmuir 34(9), 2989–2995 (2018)

    Article  CAS  Google Scholar 

  142. F. Mangolini, B.A. Krick, T.D.B. Jacobs, S.R. Khanal, F. Streller, J.B. McClimon et al., Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions. Carbon 130, 127–136 (2018)

    Article  CAS  Google Scholar 

  143. A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. Royal Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 2004(362), 2477–2512 (1824)

    Google Scholar 

  144. F. Rose, N. Wang, R. Smith, Q.-F. Xiao, H. Inaba, T. Matsumura et al., Complete characterization by Raman spectroscopy of the structural properties of thin hydrogenated diamond-like carbon films exposed to rapid thermal annealing. J. Appl. Phys. 116(12), 123516 (2014)

    Article  CAS  Google Scholar 

  145. A.C. Ferrari, B. Kleinsorge, G. Adamopoulos, J. Robertson, W.I. Milne, V. Stolojan et al., Determination of bonding in amorphous carbons by electron energy loss spectroscopy, Raman scattering and X-ray reflectivity. J. Non-Cryst. Solids 266–269 Part 2, 765–768 (2000)

    Article  CAS  Google Scholar 

  146. J. Filik, P.W. May, S.R.J. Pearce, R.K. Wild, K.R. Hallam, XPS and laser Raman analysis of hydrogenated amorphous carbon films. Diam. Relat. Mater. 12(3–7), 974–978 (2003)

    Article  CAS  Google Scholar 

  147. S. Kaciulis, Spectroscopy of carbon: from diamond to nitride films. Surf. Interface Anal. 44(8), 1155–1161 (2012)

    Article  CAS  Google Scholar 

  148. A. Mezzi, S. Kaciulis, Surface investigation of carbon films: from diamond to graphite. Surf. Interface Anal. 42(6–7), 1082–1084 (2010)

    Article  CAS  Google Scholar 

  149. J.C. Lascovich, V. Rosato, Analysis of the electronic structure of hydrogenated amorphous carbon via Auger spectroscopy. Appl. Surf. Sci. 152(1–2), 10–18 (1999)

    Article  CAS  Google Scholar 

  150. S. Kaciulis, A. Mezzi, P. Calvani, D.M. Trucchi, Electron spectroscopy of the main allotropes of carbon. Surf. Interface Anal. 46(10–11), 966–969 (2014)

    Article  CAS  Google Scholar 

  151. B. Lesiak, J. Zemek, P. Jiricek, L. Stobinski, A. Jóźwik, The line shape analysis of electron spectroscopy spectra by the artificial intelligence methods for identification of C sp2/sp3 bonds. Phys. Status Solidi (b) 247(11–12), 2838–2842 (2010)

    Article  CAS  Google Scholar 

  152. G. Speranza, N. Laidani, Measurement of the relative abundance of sp2 and sp3 hybridised atoms in carbon based materials by XPS: a critical approach. Part I. Diam. Relat. Mater. 13(3), 445–450 (2004)

    Article  CAS  Google Scholar 

  153. J. Zemek, J. Zalman, A. Luches, XAES and XPS study of amorphous carbon nitride layers. Appl. Surf. Sci. 133(1–2), 27–32 (1998)

    Article  CAS  Google Scholar 

  154. Y. Mizokawa, T. Miyasato, S. Nakamura, K.M. Geib, C.W. Wilmsen, Comparison of the CKLL first-derivative auger spectra from XPS and AES using diamond, graphite SiC and diamond-like-carbon films. Surf. Sci. 182(3), 431–438 (1987)

    Article  CAS  Google Scholar 

  155. Y. Mizokawa, T. Miyasato, S. Nakamura, K.M. Geib, C.W. Wilmsen, The C KLL first-derivative x-ray photoelectron spectroscopy spectra as a fingerprint of the carbon state and the characterization of diamond like carbon films. J. Vac. Sci. Technol. A: Vac. Surf. Films 5(5), 2809–2813 (1987)

    Article  CAS  Google Scholar 

  156. S.D. Berger, D.R. McKenzie, P.J. Martin, EELS analysis of vacuum arc-deposited diamond-like films. Philos. Mag. Lett. 57(6), 285–290 (1988)

    Article  CAS  Google Scholar 

  157. J. Kulik, G.D. Lempert, E. Grossman, D. Marton, J.W. Rabalais, Y. Lifshitz, sp3 content of mass-selected ion-beam-deposited carbon films determined by inelastic and elastic electron scattering. Phys. Rev. B 52(22), 15812–15822 (1995)

    Article  CAS  Google Scholar 

  158. Y. Wang, H. Chen, R.W. Hoffman, J.C. Angus, Structural analysis of hydrogenated diamond-like carbon films from electron energy loss spectroscopy. J. Mater. Res. 5(11), 2378–2386 (1990)

    Article  CAS  Google Scholar 

  159. M.J. Paterson, An investigation of the role of hydrogen in ion beam deposited a-C:H. Diam. Relat. Mater. 7(6), 908–915 (1998)

    Article  CAS  Google Scholar 

  160. C. Donnet, J. Fontaine, F. Lefebvre, A. Grill, V. Patel, C. Jahnes, Solid state 13C and 1H nuclear magnetic resonance investigations of hydrogenated amorphous carbon. J. Appl. Phys. 85(6), 3264–3270 (1999)

    Article  CAS  Google Scholar 

  161. J. Peng, A. Sergiienko, F. Mangolini, P.E. Stallworth, S. Greenbaum, R.W. Carpick, Solid state magnetic resonance investigation of the thermally-induced structural evolution of silicon oxide-doped hydrogenated amorphous carbon. Carbon 105, 163–175 (2016)

    Article  CAS  Google Scholar 

  162. G. Kovach, A. Karacs, G. Radnoczi, H. Csorbai, L. Guczi, M. Veres et al., Modified π-states in ion-irradiated carbon. Appl. Surf. Sci. 254(9), 2790–2796 (2008)

    Article  CAS  Google Scholar 

  163. J.A. Leiro, M.H. Heinonen, T. Laiho, I.G. Batirev, Core-level XPS spectra of fullerene, highly oriented pyrolitic graphite, and glassy carbon. J. Electron Spectrosc. Relat. Phenom. 128(2–3), 205–213 (2003)

    Article  CAS  Google Scholar 

  164. R.F. Egerton, An Introduction to EELS. Electron Energy-Loss Spectroscopy in the Electron Microscope. Springer, US, pp. 1–28 (2011)

    Chapter  Google Scholar 

  165. P.J. Fallon, V.S. Veerasamy, C.A. Davis, J. Robertson, G.A.J. Amaratunga, W.I. Milne et al., Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy. Phys. Rev. B 48(7), 4777–4782 (1993)

    Article  CAS  Google Scholar 

  166. D.G. McCulloch, D.R. McKenzie, C.M. Goringe, Ab initio simulations of the structure of amorphous carbon. Phys. Rev. B 61(3), 2349–2355 (2000)

    Article  CAS  Google Scholar 

  167. K.E. Sohn, M.D. Dimitriou, J. Genzer, D.A. Fischer, C.J. Hawker, E.J. Kramer, Determination of the electron escape depth for NEXAFS spectroscopy. Langmuir 25(11), 6341–6348 (2009)

    Article  CAS  Google Scholar 

  168. S. Anders, J. Diaz, J.W. Ager Iii, R.Y. Lo, D.B. Bogy, Thermal stability of amorphous hard carbon films produced by cathodic arc deposition. Appl. Phys. Lett. 71(23), 3367–3369 (1997)

    Article  CAS  Google Scholar 

  169. S. Takabayashi, K. Okamoto, H. Sakaue, T. Takahagi, K. Shimada, T. Nakatani, Annealing effect on the chemical structure of diamondlike carbon. J. Appl. Phys. 104(4), 043512–043516 (2008)

    Article  CAS  Google Scholar 

  170. N. Wang, K. Komvopoulos, F. Rose, B. Marchon, Structural stability of hydrogenated amorphous carbon overcoats used in heat-assisted magnetic recording investigated by rapid thermal annealing. J. Appl. Phys. 113(8), 083517–083517 (2013)

    Article  CAS  Google Scholar 

  171. J.P. Sullivan, T. Friedmann, A. Baca, Stress relaxation and thermal evolution of film properties in amorphous carbon. J. Electron. Mater. 26(9), 1021–1029 (1997)

    Article  CAS  Google Scholar 

  172. A.C. Ferrari, S.E. Rodil, J. Robertson, W.I. Milne, Is stress necessary to stabilise sp3 bonding in diamond-like carbon? Diam. Relat. Mater. 11(3–6), 994–999 (2002)

    Article  CAS  Google Scholar 

  173. C.M. Mate, Tribology on the Small Scale—A Bottom Up Approach to Friction, Lubrication, and Wear (Oxford University Press, Oxford, 2007)

    Book  Google Scholar 

  174. M.H. Kryder, E.C. Gage, T.W. McDaniel, W.A. Challener, R.E. Rottmayer, J. Ganping et al., Heat assisted magnetic recording. Proc. IEEE 96(11), 1810–1835 (2008)

    Article  CAS  Google Scholar 

  175. J. Hilbert, F. Mangolini, J.B. McClimon, J.R. Lukes, R.W. Carpick, Si doping enhances the thermal stability of diamond-like carbon through reductions in carbon-carbon bond length disorder. Carbon 131, 72–78 (2018)

    Article  CAS  Google Scholar 

  176. C. Venkatraman, D. Kester, A. Goel, D. Bray, in Diamond-Like Nanocomposite Coatings—A New Class of Materials, ed. by T.S. Sudarshan, W. Reitz, J.J. Stiglich. Surface Modification Technologies IX (The Minerals, Metals & Materials Society, 1996)

    Google Scholar 

  177. T.W. Scharf, J.A. Ohlhausen, D.R. Tallant, S.V. Prasad, Mechanisms of friction in diamondlike nanocomposite coatings. J. Appl. Phys. 101(6), 063521–063511 (2007)

    Article  CAS  Google Scholar 

  178. W.J. Yang, Y.-H. Choa, T. Sekino, K.B. Shim, K. Niihara, K.H. Auh, Thermal stability evaluation of diamond-like nanocomposite coatings. Thin Solid Films 434(1–2), 49–54 (2003)

    Article  CAS  Google Scholar 

  179. C. Jongwannasiri, X. Li, S. Watanabe, Improvement of thermal stability and tribological performance of diamond-like carbon composite thin films. Mater. Sci. Appl. 4, 630–636 (2013)

    CAS  Google Scholar 

  180. V.F. Dorfman, Diamond-like nanocomposites (DLN). Thin Solid Films 212(1–2), 267–273 (1992)

    Article  CAS  Google Scholar 

  181. D. Neerinck, P. Persoone, M. Sercu, A. Goel, D. Kester, D. Bray, Diamond-like nanocomposite coatings (a-C:H/a-Si:O) for tribological applications. Diam. Relat. Mater. 7(2–5), 468–471 (1998)

    Article  CAS  Google Scholar 

  182. F. Demichelis, C.F. Pirri, A. Tagliaferro, Influence of silicon on the physical properties of diamond-like films. Mater. Sci. Eng. B 11(1–4), 313–316 (1992)

    Article  Google Scholar 

  183. R. Hatada, S. Flege, K. Baba, W. Ensinger, H.J. Kleebe, I. Sethmann et al., Temperature dependent properties of silicon containing diamondlike carbon films prepared by plasma source ion implantation. J. Appl. Phys. 107(8), 083307–083306 (2010)

    Article  CAS  Google Scholar 

  184. G.J. Wan, P. Yang, R.K.Y. Fu, Y.F. Mei, T. Qiu, S.C.H. Kwok et al., Characteristics and surface energy of silicon-doped diamond-like carbon films fabricated by plasma immersion ion implantation and deposition. Diam. Relat. Mater. 15(9), 1276–1281 (2006)

    Article  CAS  Google Scholar 

  185. W.-J. Wu, M.-H. Hon, Thermal stability of diamond-like carbon films with added silicon. Surf. Coat. Technol. 111(2–3), 134–140 (1999)

    Article  CAS  Google Scholar 

  186. C. Donnet, A. Erdemir (eds.), Tribology of Diamond-Like Carbon Films (Springer, New York, 2008)

    Google Scholar 

  187. A. Erdemir, C. Donnet, Tribology of Diamond, Diamond-Like Carbon, and Related Films, in Modern Tribology Handbook, ed. by B. Bhushan (CRC Press, Boca Raton, 2001)

    Google Scholar 

  188. J. Andersson, R.A. Erck, A. Erdemir, Frictional behavior of diamondlike carbon films in vacuum and under varying water vapor pressure. Surf. Coat. Technol. 163–164, 535–540 (2003)

    Article  Google Scholar 

  189. Y. Tzeng, Very low friction for diamond sliding on diamond in water. Appl. Phys. Lett. 63(26), 3586–3588 (1993)

    Article  CAS  Google Scholar 

  190. M.N. Gardos, Surface chemistry-controlled tribological behavior of silicon and diamond. Tribol. Lett. 2(2), 173–187 (1996)

    Article  CAS  Google Scholar 

  191. M.N. Gardos, Tribological fundamentals of polycrystalline diamond films. Surf. Coat. Technol. 113(3), 183–200 (1999)

    Article  CAS  Google Scholar 

  192. J.A. Harrison, D.W. Brenner, Simulated tribochemistry: an atomic-scale view of the wear of diamond. J. Am. Chem. Soc. 116(23), 10399–10402 (1994)

    Article  CAS  Google Scholar 

  193. J.A. Harrison, C.T. White, R.J. Colton, D.W. Brenner, Investigation of the atomic-scale friction and energy dissipation in diamond using molecular dynamics. Thin Solid Films 260(2), 205–211 (1995)

    Article  CAS  Google Scholar 

  194. M.D. Perry, J.A. Harrison, Universal aspects of the atomic-scale friction of diamond surfaces. J. Phys. Chem. 99(24), 9960–9965 (1995)

    Article  CAS  Google Scholar 

  195. G. Zilibotti, M.C. Righi, M. Ferrario, Ab initio study on the surface chemistry and nanotribological properties of passivated diamond surfaces. Phys. Rev. B 79(7), 075420 (2009)

    Article  CAS  Google Scholar 

  196. O. Manelli, S. Corni, M.C. Righi, Water adsorption on native and hydrogenated diamond (001) surfaces. J. Phys. Chem. C 114(15), 7045–7053 (2010)

    Article  CAS  Google Scholar 

  197. Y. Qi, E. Konca, A.T. Alpas, Atmospheric effects on the adhesion and friction between non-hydrogenated diamond-like carbon (DLC) coating and aluminum—a first principles investigation. Surf. Sci. 600(15), 2955–2965 (2006)

    Article  CAS  Google Scholar 

  198. R.J.A. van den Oetelaar, C.F.J. Flipse, Atomic-scale friction on diamond (111) studied by ultra-high vacuum atomic force microscopy. Surf. Sci. 384(1–3), L828–L835 (1997)

    Article  Google Scholar 

  199. M.N. Gardos, B.L. Soriano, The effect of environment on the tribological properties of polycrystalline diamond films. J. Mater. Res. 5, 2599–2609 (1990)

    Article  Google Scholar 

  200. A. Erdemir, G.R. Fenske, A.R. Krauss, D.M. Gruen, T. McCauley, R.T. Csencsits, Tribological properties of nanocrystalline diamond films. Surf. Coat. Technol. 120–121, 565–572 (1999)

    Article  Google Scholar 

  201. S.E. Grillo, J.E. Field, The friction of CVD diamond at high Hertzian stresses: the effect of load, environment and sliding velocity. J. Phys. D Appl. Phys. 33(6), 595 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. DMR-1107642 and by the Agence Nationale de la Recherche under grant No. ANR-11-NS09-01 through the Materials World Network program. F.M. acknowledges support from The University of Texas at Austin Startup Funding, the Marie Curie International Outgoing Fellowship for Career Development within the 7th European Community Framework Program under contract no. PIOF-GA-2012-328776 and the Marie Skłodowska-Curie Individual Fellowship within the European Union’s Horizon 2020 Program under contract no. 706289. The authors acknowledge support from the Advanced Storage Technology Consortium ASTC (grant 2011-012). The authors would like to thank Dr. C. Jaye and Dr. D. A. Fischer for the kind assistance with the NEXAFS measurements at the National Synchrotron Light Source. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The authors would like to acknowledge Prof. R. W. Carpick (University of Pennsylvania, Philadelphia, USA) for fruitful discussions, valuable suggestions, and guidance. Finally, the authors would also like to thank Dr. K. D. Koshigan (Ecole Centrale de Lyon, Ecully-Cedex, France) and Dr. J. Fontaine (Ecole Centrale de Lyon, Ecully-Cedex, France) for performing tribological experiments on a-C:H:Si:O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Mangolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mangolini, F., McClimon, J.B. (2018). Near Edge X-Ray Absorption Fine Structure Spectroscopy: A Powerful Tool for Investigating the Surface Structure and Chemistry of Solid Lubricants. In: Dienwiebel, M., De Barros Bouchet, MI. (eds) Advanced Analytical Methods in Tribology. Microtechnology and MEMS. Springer, Cham. https://doi.org/10.1007/978-3-319-99897-8_3

Download citation

Publish with us

Policies and ethics