Skip to main content
Log in

Abstract

The calculation of the correlation function of an isotropic fractal particle with the finite size ξ and the dimension D is presented. It is shown that the correlation function γ(r) of volume and surface fractals is described by a generalized expression and is proportional to the Macdonald function (D–3)/2 of the second order multiplied by the power function r (D–3)/2. For volume and surface fractals, the asymptotics of the correlation function at the limit r/ξ < 1 coincides with the corresponding correlation functions of unlimited fractals. The one-dimensional correlation function G(z), which, for an isotropic fractal particle, is described by an analogous expression with a shift of the index of the Macdonald function and the exponent of the power function by 1/2, is measured using spin-echo small-angle neutron scattering. The boundary case of the transition from a volume to a surface fractal corresponding to the cubic dependence of the neutron scattering cross section Q −3 leads to an exact analytical expression for the one-dimensional correlation function G(z) = exp(−z/ξ), and the asymptotics of the correlation function in the range of fractal behavior for r/ξ < 1 is proportional to ln(ξ/r). This corresponds to a special type of self-similarity with the additive law of scaling rather than the multiplicative one, as in the case of a volume fractal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, CA, 1983).

    Google Scholar 

  2. D. W. Maccarthy, J. E. Mark, and D. W. Schaefer, J. Polym. Sci., Part B: Polym. Phys. 36, 1167 (1998).

    Article  Google Scholar 

  3. D. W. Schaefer and R. S. Justice, Macromolecules 40 (2), 8501 (2007).

    Article  Google Scholar 

  4. R. J. Roe, Methods of X-ray and Neutron Scattering in Polymer Science (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  5. D. H. Bale and P. W. Schmidt, Phys. Rev. Lett. 53 (6), 596 (1984).

    Article  Google Scholar 

  6. A. J. Hurd, D. W. Schaefer, and J. E. Martin, Phys. Rev. A 35 (5), 2361 (1987).

    Article  Google Scholar 

  7. A. Ilatovskiy, D. Lebedev, M. Filatov, M. Petukhov, and V. Isaev-Ivanov, J. Phys.: Conf. Ser., 351, 1 (2012).

    Google Scholar 

  8. A. Bancaud, C. Lavelle, S. Huet, and J. Ellenberg, Nucleic Acids Res. 40 (18), 8783 (2012).

    Article  Google Scholar 

  9. P. W. Schmidt, in The Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers (John Wiley & Sons, Chichester, New York, 1989).

    Google Scholar 

  10. D. V. Lebedev, M. V. Filatov, A. I. Kuklin, A. Kh. Islamov, E. Kentzinger, R. A. Pantina, B. P. Toperverg, and V. V. Isaev-Ivanov, FEBS Lett. 579, 1465 (2005).

    Article  Google Scholar 

  11. K. Metze, Expert Rev. Mol. Diagn. 13 (7), 719 (2013).

    Article  Google Scholar 

  12. L. A. Mirny, Chromosome Res. 19 (1), 37 (2011).

    Article  Google Scholar 

  13. T. Elias-Kohav and M. Shelntuch, Chem. Eng. Sci. 46 (11), 2787 (1991).

    Article  Google Scholar 

  14. L. Jonson, X. Li, and B. Logan, Environ. Sci. Technol. 30 (6), 1911 (1996).

    Article  Google Scholar 

  15. K. S. Suslick, Annu. Rev. Mater. Sci. 29, 295 (1999).

    Article  Google Scholar 

  16. Hangxun Xu, W. B. Zeigera, and K. S. Suslick, Chem. Soc. Rev. 42, 2555 (2013).

    Article  Google Scholar 

  17. V. Saez and T. J. Mason, Molecules 14, 4284 (2009).

    Article  Google Scholar 

  18. J. H. Bang and K. S. Suslick, Adv. Mater. 22, 1039 (2010).

    Article  Google Scholar 

  19. P. E. Meskin, V. K. Ivanov, A. E. Barantchikov, B. R. Churagulov, and Yu. D. Tretyakov, Ultrason. Sonochem. 13, 47 (2006).

    Article  Google Scholar 

  20. J. Teixeira, in On Growth and Form, Ed. by H. E. Stanley and N. Ostrowsky (Nijhoff, Dordrecht, 1986), pp. 145–162.

  21. J. Teixeira, J. Appl. Crystallogr. 21, 781 (1988).

    Article  Google Scholar 

  22. M. Th. Rekveldt, Nucl. Instrum. Methods Phys. Res., Sect. B 114, 366 (1996).

    Article  Google Scholar 

  23. M. Th. Rekveldt, W. G. Bouwman, W. H. Kraan, O. Uca, S. V. Grigoriev, K. Habich, and T. Keller, Lect. Notes Phys. 601, 87 (2003).

    Article  Google Scholar 

  24. P. Debye and A. M. Bueche, J. Appl. Phys. 20, 518 (1949).

    Article  Google Scholar 

  25. P. Debye, H. R. Anderson, and H. Brumberger, J. Appl. Phys. 28 (6), 679 (1957).

    Article  Google Scholar 

  26. A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  27. S. V. Maleev and V. A. Ruban, Zh. Eksp. Teor. Fiz. 62 (2), 415 (1972).

    Google Scholar 

  28. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Clarendon Press, Oxford, 1971).

    Google Scholar 

  29. S.-N. Chen and D. Bendedouch, in Enzyme Structure, Vol. 91 of Methods in Enzymology (Academic Press, New York, 1985).

    Google Scholar 

  30. Wong Po-zen and Cao Qi-zhong, Phys. Rev. B 45 (14), 7627 (1992).

    Article  Google Scholar 

  31. S. K. Sinha, Phys. D (Amsterdam, Neth.) 38, 310 (1989).

    Article  Google Scholar 

  32. T. Freltoft, J. K. Kjems, and S. K. Sinha, Phys. Rev. B 33 (1), 269 (1986).

    Article  Google Scholar 

  33. J. K. Kjems, T. Freltoft, D. Richter, and S. K. Sinha, Phys. B (Amsterdam, Neth.) 136, 285 (1986).

    Article  Google Scholar 

  34. P. Pfeifer and P. W. Schmidt, Phys. Rev. Lett. 60 (13), 1345 (1988).

    Article  Google Scholar 

  35. Wong Po-zen and A. J. Bray, Phys. Rev. Lett. 60 (13), 786 (1988).

    Google Scholar 

  36. D. H. Bale and P. W. Schmidt, Phys. Rev. Lett. 53 (6), 596 (1984).

    Article  Google Scholar 

  37. M. Th. Rekveldt, J. Plomp, W. G. Bouwman, W. H. Kraan, S. Grigoriev, and M. Blaauw, Rev. Sci. Instrum. 76, 252 (2005).

    Article  Google Scholar 

  38. T. Krouglov, I. M. de Schepper, W. G. Bouwman, and M. Th. Rekveldt, J. Appl. Crystallogr. 36, 117–124 (2003).

    Article  Google Scholar 

  39. W. G. Bouwman, T. V. Krouglov, J. Plomp, and M. Th. Rekveldt, Phys. B (Amsterdam, Neth.) 357, 66 (2004).

    Article  Google Scholar 

  40. T. Krouglov, W. G. Bouwman, J. Plomp, M. Th. Rekveldt, G. J. Vroege, and A. V. Petukhov, J. Appl. Crystallogr. 36, 1417 (2003).

    Article  Google Scholar 

  41. R. Andersson, W. G. Bouwman, J. Plomp, F. M. Mulder, H. G. Schimmel, and I. M. de Schepper, Powder Technol. 189, 6 (2009).

    Article  Google Scholar 

  42. R. Andersson, W. G. Bouwman, S. Luding, and I. M. de Schepper, Granular Matter 10, 407 (2008).

    Article  Google Scholar 

  43. R. Andersson, L. F. van Heijkamp, I. M. de Schepper, and W. G. Bouwman, J. Appl. Crystallogr. 41, 868 (2008).

    Article  Google Scholar 

  44. R. Andersson, W. G. Bouwman, S. Luding, and I. M. de Schepper, Phys. Rev. E 051303-1 (8), 77 (2008).

    Google Scholar 

  45. R. A. Andersson, PhD Thesis (Delft Univ. of Technology, IOS Press, 2008).

    Google Scholar 

  46. P.-Z. Wong and A. J. Bray, J. Appl. Crystallogr. 21, 786 (1988).

    Article  Google Scholar 

  47. J. O. Indekeu and G. Fleerackers, Phys. A (Amsterdam, Neth.) 261, 294 (1998).

    Article  Google Scholar 

  48. G. N. Fedotov, Yu. D. Tret’yakov, E. I. Pakhomov, A. I. Kuklin, A. Kh. Islamov, and T. N. Pochatkova, Dokl. Chem. 409 (1), 117 (2006).

    Article  Google Scholar 

  49. G. N. Fedotov, Yu. D. Tret’yakov, V. I. Putlyaev, E. I. Pakhomov, A. I. Kuklin, and A. Kh. Islamov, Dokl. Chem. 412 (2), 55 (2007).

    Article  Google Scholar 

  50. G. N. Fedotov, Yu. D. Tret’yakov, V. K. Ivanov, A. I. Kuklin, A. Kh. Islamov, V. I. Putlyaev, A. V. Garshev, and E. I. Pakhomov, Dokl. Chem. 404 (2), 199 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Iashina.

Additional information

Original Russian Text © E.G. Iashina, S.V. Grigoriev, 2017, published in Poverkhnost’, 2017, No. 9, pp. 5–16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iashina, E.G., Grigoriev, S.V. Small-angle neutron scattering at fractal objects. J. Surf. Investig. 11, 897–907 (2017). https://doi.org/10.1134/S1027451017040334

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451017040334

Keywords

Navigation