Skip to main content
Log in

Monte Carlo method in scanning electron microscopy. 1. Modeling and experiment

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Results of modeling by the Monte Carlo method of signals from a scanning electron microscope examining rectangular grooves in silicon are compared with experimental results obtained for a scanning electron microscope operating in the secondary slow electron collection mode. The comparison is performed for the peaks of signals characterizing the primary electron beam near the walls of rectangular grooves: the widths and amplitudes of the peaks, the integral contributions of the peaks, and the positions of the peaks relative to the walls of the grooves. The parameters and their dependences on the primary electron energy are compared. All dependences are very different in terms of the parameters of the peaks and their dependence on the primary electron energy. This proves that the traditional representation of the Monte Carlo method does not work in scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, and E. Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis. A Text for Biologists, Materials Scientists, and Geologists (Plenum Press, New York, London, 1981).

    Book  Google Scholar 

  2. L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (Springer, Berlin, Heidelberg, New York, 1998).

    Book  Google Scholar 

  3. Scanning Microscopy for Nanotechnology. Techniques and Applications, Ed. by W. Zhou and Z. L. Wang (Springer Science+Business Media, New York, 2006).

  4. International Technology Roadmap for Semiconductors, 2013 Edition, Metrology (2013).

  5. Yu. A. Novikov and A. V. Rakov, Meas. Tech. 42 (1), 20–26 (1999).

    Article  Google Scholar 

  6. M. T. Postek and A. E. Vladar, Critical Dimension Metrology and the Scanning Electron Microscope, Handbook of Silicon Semiconductor Metrology, Ed. by A. C. Diebold (Marcel Dekker, New York, Basel, 2001), pp. 295–333.

    Google Scholar 

  7. M. T. Postek, Proc. SPIE 4608, 84–96 (2002).

    Article  Google Scholar 

  8. M. Postek, Vestn. Tekh. Regul., No. 7, 8–17 (2007).

    Google Scholar 

  9. V. Gavrilenko, Yu. Novikov, A. Rakov, and P. Todua, Nanoindustriya, No. 4, 36–42 (2009).

    Google Scholar 

  10. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7405, 740504-1–740504-8 (2009). doi 10.1117/12.826164

  11. V. P. Gavrilenko, V. A. Kalnov, Yu. A. Novikov, A. A. Orlikovsky, A. V. Rakov, P. A. Todua, K. A. Valiev, and E. N. Zhikharev, Proc. SPIE 7272, 727227-1–727227-9 (2009). doi 10.1117/12.814062

  12. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8 (6), 1244–1251 (2014). doi 10.1134/S1027451014060123

    Article  Google Scholar 

  13. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (3), 604–611 (2015). doi 10.1134/S1027451015030325

    Article  Google Scholar 

  14. Yu. A. Novikov, Russ. Microelectron. 43 (4), 258–269 (2014). doi 10.1134/S1063739714040076

    Article  Google Scholar 

  15. Yu. A. Novikov, Russ. Microelectron. 43 (6), 427–437 (2014). doi 10.1134/S1063739714060079

    Article  Google Scholar 

  16. Yu. A. Novikov, Russ. Microelectron. 44 (4), 269–282 (2015). doi 10.1134/S1063739715030075

    Article  Google Scholar 

  17. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10 (1), 68–75 (2016). doi 10.1134/S1027451015060166

    Article  Google Scholar 

  18. Y. G. Li, S. F. Mao, and Z. J. Ding, in Applications of Monte Carlo Method in Science and Engineering, Ed. by S. Mordechai (InTech, 2011), pp. 232–296.

  19. V. Stary, in Applications of Monte Carlo Method in Science and Engineering, Ed. by S. Mordechai (InTech, 2011), pp. 195–230.

  20. P. Zhang, H. Y. Wang, Y. G. Li, S. F. Mao, and Z. J. Ding, Scanning 34, 145–150 (2012). doi 10.1002/sca.20288

    Article  Google Scholar 

  21. Y. G. Li, P. Zhang, and Z. J. Ding, Scanning 35, 127–139 (2013). doi 10.1002/sca.21042

    Article  Google Scholar 

  22. Z. Ruan, M. Zhang, R. G. Zeng, Y. Ming, B. Da, S. F. Mao, and Z. J. Ding, Surf. Interface Anal. 46, 1296–1300 (2014). doi 10.1002/sia.5565

    Article  Google Scholar 

  23. J. S. Villarrubia, A. E. Vladar, B. Ming, R. J. Kline, D. F. Sunday, J. S. Chawla, and S. List, Ultramicroscopy 154, 15–28 (2015).

    Article  Google Scholar 

  24. Yu. A. Novikov, Phys., Chem., Mech. Surf. 11 (10), 1077–1084 (1995).

    Google Scholar 

  25. Yu. A. Novikov and A. V. Rakov, “Secondary electron emission from a relief surface of solids”, Mechanisms of secondary electron emission from a relief surface of solids, Moscow: Nauka. Fizmatlit, 1998, pp. 3–99; (Proc. IOFAN, Vol. 55). [in Russian].

    Google Scholar 

  26. K. A. Valiev, The Physics of Submicron Lithography (Plenum Press, New York, 1992).

    Book  Google Scholar 

  27. M. Dapor, E. I. Rau, and R. A. Sennov, J. Appl. Phys. 102, 063705-1–063705-5 (2007).

  28. M. Kadowaki, A. Hamaguchi, H. Abe, Y. Yamazaki, S. Borisov, A. Ivanchikov, and S. Babin, Proc. SPIE 7272, 72723I-1–72723I-9 (2009).

  29. Ch. P. Volk, Yu. A. Novikov, Yu. V. Ozerin, and A. V. Rakov, Meas. Tech. 44 (4), 365–369 (2001). doi 10.1023/A:1010911613346

    Article  Google Scholar 

  30. Yu. A. Novikov, S. V. Peshekhonov, and I. B. Strizhkov, “The slit-like reference gauge structure for the SEM calibration and measurements of relief elements in submicron and nanometer ranges”, Problems of linear measurements of microobjects in nanometer and submicron ranges. Moscow: Nauka, 1995, pp. 20–40; (Proc. IOFAN, Vol. 49). [in Russian].

    Google Scholar 

  31. Yu. A. Novikov, V. P. Gavrilenko, A. V. Rakov, and P. A. Todua, Proc. SPIE 7042, 704208-1–704208-12 (2008). doi 10.1117/12.794834

  32. Yu. A. Novikov and S. V. Peshekhonov, “The ellipsometry method errors of evaluation of a silicon and dioxide silicon film optical characteristics”, Problems of linear measurements of microobjects in nanometer and submicron ranges, Moscow: Nauka, 1995, pp. 107–118; (Proc. IOFAN, Vol. 49). [in Russian].

    Google Scholar 

  33. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7718, 77181B-1–77181B-10 (2010). doi 10.1117/12.853898

  34. R. W. Nosker, J. Appl. Phys. 40, 1872–1882 (1969).

    Article  Google Scholar 

  35. I. Brodie and J. J. Muray, The Physics and Microfabrication (Plenum Press, New York, London, 1982).

    Book  Google Scholar 

  36. Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. I. Plotnikov, A. V. Rakov, P. A. Todua, Yu. A. Novikov and S. V. Peshekhonov, “Problems of measurement of geometric characteristics of electron probe of scanning electron microscope”, Linear measurements in micrometer and nanometer ranges for microelectronics and nanotechnology. Moscow: Nauka, 2006, pp. 77–120; (Proc. IOFAN, Vol. 62) [in Russian].

    Google Scholar 

  37. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7042, 70420C-1–70420C-12 (2008). doi 10.1117/12.794891

  38. A. F. Makhov, Fiz. Tverd. Tela 2 (9), 2172–2175 (1960).

    Google Scholar 

  39. Yu. A. Novikov, A. V. Rakov, and I. Yu. Stekolin, Physics, Chemistry, and Mechanics of Surfaces 10 (4), 501–511 (1995).

    Google Scholar 

  40. Yu. A. Novikov and A. V. Rakov, Surf. Invest. 15 (8), 1177–1194 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Novikov.

Additional information

Original Russian Text © Yu.A. Novikov, 2017, published in Poverkhnost’, 2017, No. 8, pp. 73–86.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, Y.A. Monte Carlo method in scanning electron microscopy. 1. Modeling and experiment. J. Surf. Investig. 11, 853–864 (2017). https://doi.org/10.1134/S1027451017040243

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451017040243

Keywords

Navigation