Skip to main content
Log in

On the long-range detection and study of undamped directed temperature waves generated during the interaction between a cavitating water jet and targets

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The features of the propagation of undamped thermal (temperature) waves in air are investigated. The presence of these waves is a consequence of solution of the heat equation taking into account the relaxation of local thermal perturbation. It is shown that such waves can exist only in media with a finite (nonzero) time of local thermal relaxation, and their frequencies are determined by this time. The time of relaxation in air depends on the gas composition, its temperature and increases with a decrease in pressure. Under normal conditions, the minimum frequency of undamped waves in air corresponds to 70–80 MHz. One of the methods for exciting these waves is associated with pulsed heating of the surface of a medium bordering air. Pulsed heating on account of the application of shock waves generated during water jet cavitation is used. It is shown for the first time that these waves with frequencies in the range of 70–500 MHz can propagate in air without damping over a distance of up to 2 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Sobolev, Usp. Fiz. Nauk 61 (3), 5 (1991).

    Article  Google Scholar 

  2. S. L. Sobolev, Usp. Fiz. Nauk 167 (10), 1095 (1997).

    Article  Google Scholar 

  3. C. Cattaneo, C. R. Acad. Sci. 247, 431 (1958).

    Google Scholar 

  4. M. R. Vernotte, C. R. Acad. Sci. 246, 3154 (1958).

    Google Scholar 

  5. A. Salazar, Eur. J. Phys. 27 (6), 1349 (2006).

    Article  Google Scholar 

  6. A. O. Vasylenko, V. I. Vysotskii, and V. B. Vassilenko, Int. J. Sci.: Basic Appl. Res. 12 (1), 160 (2013).

    Google Scholar 

  7. V. I. Vysotskii, A. O. Vasylenko, V. B. Vassilenko, and M. V. Vysotskyy, Inorg. Mater.: Appl. Res. 6 (3), 199 (2015).

    Article  Google Scholar 

  8. D. V. Sivukhin, Thermodynamics and Molecular Physics (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  9. A. S. Telegin, V. S. Shvydkii, and Yu. G. Yaroshenko, Heat and Mass Transfer (Akademkniga, Moscow, 2002) [in Russian].

    Google Scholar 

  10. A. A. Kornilova, V. I. Vysotskii, N. N. Sysoev, N. K. Litvin, V. I. Tomak, and A. A. Barzov. J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 4 (6), 1008 (2010).

    Article  Google Scholar 

  11. V. I. Vysotskii, A. A. Kornilova, A. O. Vasilenko, and V. I. Tomak, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8 (6), 1186 (2014).

    Article  Google Scholar 

  12. V. I. Vysotskii, A. A. Kornilova, and A. O. Vasilenko, Curr. Sci. 108 (4), 114 (2015).

    Google Scholar 

  13. S. N. Gurbatov and O. V. Rudenko, Acoustics in Problems (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  14. V. I. Vysotskii and M. V. Vysotskyy, Eur. Phys. J. A 49 (8), 99 (2013).

    Article  Google Scholar 

  15. V. I. Vysotskii, S. V. Adamenko, and M. V. Vysotskyy, Ann. Nucl. Energy 62, 618 (2013).

    Article  Google Scholar 

  16. V. I. Vysotskii and M. V. Vysotskyy, J. Exp. Theor. Phys. (JETP) 120 (2), 246 (2015).

    Article  Google Scholar 

  17. V. I. Vysotskii, S. V. Adamenko, and M. V. Vysotskii, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6 (2), 369 (2012).

    Article  Google Scholar 

  18. H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences (Springer, New York, 2010).

    Google Scholar 

  19. V. I. Vysotskii and A. A. Kornilova, Ann. Nucl. Energy 62, 626 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vysotskii.

Additional information

Original Russian Text © V.I. Vysotskii, A.A. Kornilova, T.B. Krit, M.V. Vysotskyy, 2017, published in Poverkhnost’, 2017, No. 7, pp. 74–81.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vysotskii, V.I., Kornilova, A.A., Krit, T.B. et al. On the long-range detection and study of undamped directed temperature waves generated during the interaction between a cavitating water jet and targets. J. Surf. Investig. 11, 749–755 (2017). https://doi.org/10.1134/S1027451017040140

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451017040140

Keywords

Navigation