Skip to main content
Log in

Electron microscopy studies of crystallites in carbon nanopillars grown by low-temperature plasma-enhanced chemical-vapor deposition

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Carbon crystallites in separate vertically oriented nanopillars grown on the surface of a substrate by low-temperature plasma-enhanced chemical-vapor deposition (LTPECVD) without a catalyst are studied by transmission electron microscopy (TEM) and electron diffraction. Thin planar lamellae are manufactured from the half-height section of an array of nanopillars using a focused ion beam. It is established that the crystallites in an amorphous environment are constructed from fragments of basal planes (002), have no well-distinguished boundaries, and their size is generally 1–2 nm. It is shown that the fraction of crystallites in the total volume of the material of nanopillars gradually grows, and the average distance between the basal planes decreases after annealing at temperatures of 250 and 700°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Guldi and N. Martin, Carbon Nanotubes and Related Structures: Synthesis, Characterization, Functionalization, and Applications (Wiley-VCH, Weinheim, 2010). doi 10.1002/9783527629930

    Book  Google Scholar 

  2. Y. Lan, Y. Wang, and Z. F. Ren, Adv. Phys. 60 (4), 553 (2011). doi 10.1080/00018732.2011.599963

    Article  Google Scholar 

  3. C. H. See and A. T. Harris, Ind. Eng. Chem. Res. 46, 997 (2007). doi 10.1021/ie060955b

    Article  Google Scholar 

  4. A. Szabo, C. Perri, A. Csato, G. Giordano, D. Vuono, and J. B. Nagy, Materials 3, 3092 (2010). doi 10.3390/ma3053092

    Article  Google Scholar 

  5. M. Kumar and Y. Ando, J. Nanosci. Nanotechnol. 10, 3739 (2010). doi 10.1166/jnn.2010.2939

    Article  Google Scholar 

  6. Z. P. Huang, J. W. Xu, and Z. F. Ren, Appl. Phys. Lett. 73 (26), 3845 (1998). doi 10.1063/1.122912

    Article  Google Scholar 

  7. M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash, Plasma Sources Sci. Technol. 12, 205 (2003). doi 10.1088/0963-0252/12/2/312

    Article  Google Scholar 

  8. S. Hofmann, B. Kleinsorge, C. Ducati, A. C. Ferrari, and J. Robertson, Diamond Relat. Mater. 13, 1171 (2004). doi 10.1016/j.diamond.2003.11.046

    Article  Google Scholar 

  9. Y. J. Jung, B. Wei, J. Nugent, and P. M. Ajayan, Carbon 39, 2195 (2001). doi 10.1016/S0008-6223(01)00041-0

    Article  Google Scholar 

  10. S. Liu, F. Li, and S. Bai, J. Mater. Sci. Technol. 25 (2), 259 (2009).

    Google Scholar 

  11. H.-L. Ma, D. S. Su, A. Klein-Hoffmann, G.-Q. Jin, and X.-Y. Guo, Carbon 44 (11), 2254 (2006). doi 10.1016/j.carbon.2006.02.033

    Article  Google Scholar 

  12. S. Mori and M. Suzuki, Thin Solid Films 517, 4264 (2009). doi 10.1016/j.tsf.2009.02.009

    Article  Google Scholar 

  13. S. Mori and M. Suzuki, Diamond Relat. Mater. 18, 678 (2009). doi 10.1016/j.diamond.2009.01.002

    Article  Google Scholar 

  14. D. G. Gromov, N. I. Borgardt, R. L. Volkov, V. A. Galperin, Ya. S. Grishina, and S. V. Dubkov, Semiconductors 47 (13), 1703 (2013). doi 10.1134/S1063782613130095

    Article  Google Scholar 

  15. D. Gromov, N. Borgardt, Y. Grishina, A. Dedkova, E. Kirilenko, and S. Dubkov, Proc. SPIE 9440, 94400D-1 (2014). doi 10.1117/12.2179765

    Google Scholar 

  16. Ya. S. Grishina, R. L. Volkov, and S. V. Dubkov, in Proc. 6th Int. Scientific Seminar and 4th Int. Scientific School-Seminar “Modern Methods of Diffraction Data Analysis and Actual Problems of X-Ray Optics”, Ed. by V. A. Tkal’ (Novgorod Branch of St. Petersburg State Univ. of Service and Economy, Veliky Novgorod, 2013), p.46.

  17. L. A. Giannuzzi, J. L. Drown, S. R. Brown, R. B. Irwin, F. A. Stevie, et al., Microsc. Res. Tech. 41 (4), 285 (1998). doi 10.1002/(SICI)1097-0029(19980515)41:4〈285::AID-JEMT1〉3.0.CO;2-Q

    Article  Google Scholar 

  18. R. L. Volkov, N. I. Borgardt, and V. N. Kukin, Bull. Russ. Acad. Sci.: Phys. 75 (9), 1227 (2011).

    Article  Google Scholar 

  19. L. Roussel, Microsc. Today 17, 40 (2009). doi 10.1017/S1551929509000364

    Article  Google Scholar 

  20. R. Young, T. Templeton, L. Roussel, I. Gestmann, G. Veen, T. Dingle, and S. Henstra, Microsc. Today 16, 24 (2008).

    Google Scholar 

  21. L. Roussel, D. Stokes, I. Gestmann, D. Mark, and R. J. Young, Proc. SPIE 7378, 73780W-1 (2009). doi 10.1117/12.821826

    Google Scholar 

  22. T. Ferreira and W. S. Rasband, ImageJ User Guide–IJ 1.46. http://www.–imagej.nih.gov/ij/docs/guide/. 2010–2012.

    Google Scholar 

  23. ITEM. The TEM Imaging Platform. Manual (Olympus Soft Imaging Solutions GmbH, Münster, 2007).

  24. J. L. Labar, Microsc. Microanal. 14, 287 (2008). doi 10.1017/S1431927608080380

    Article  Google Scholar 

  25. J. L. Labar, Microsc. Microanal. 15, 20 (2009). doi 10.1017/S1431927609090023

    Article  Google Scholar 

  26. J. L. Labar, Microsc. Microanal. 18, 406 (2012). doi 10.1017/S1431927611012803

    Article  Google Scholar 

  27. V. N. Kukin, N. I. Borgardt, A. V. Agafonov, and V. O. Kuznetsov, Tech. Phys. Lett. 30 (9), 744 (2004).

    Article  Google Scholar 

  28. V. N. Kukin, Bull. Russ. Acad. Sci.: Phys. 75 (9), 1243 (2011).

    Article  Google Scholar 

  29. B. Yao, T. Sun, A. Warren, H. Heinrich, K. Barmak, and K. R. Coffey, Micron 41, 177 (2010). doi 10.1016/j.micron.2009.11.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. S. Grishina.

Additional information

Original Russian Text © Ya.S. Grishina, N.I. Borgardt, R.L. Volkov, D.G. Gromov, S.V. Dubkov, 2017, published in Poverkhnost’, 2017, No. 2, pp. 51–59.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishina, Y.S., Borgardt, N.I., Volkov, R.L. et al. Electron microscopy studies of crystallites in carbon nanopillars grown by low-temperature plasma-enhanced chemical-vapor deposition. J. Surf. Investig. 11, 226–233 (2017). https://doi.org/10.1134/S102745101701027X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745101701027X

Keywords

Navigation