Skip to main content
Log in

Structure phases of fe nanoparticles in vertically aligned multi-walled carbon nanotubes

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Structure and composition of arrays of vertically aligned multi-walled carbon nanotubes grown by continuous injection chemical vapor deposition method were studied using the high resolution transmission electron microscopy combined with energy dispersion spectrometry. A portion of injected Fe catalyst was found in the form of nanosized single crystalline particles with a variety of the structures of α-Fe(C), γ-Fe(C) and orthorhombic Fe3C phases encapsulated in the carbon nanotube channel or incorporated into the carbon nanotube wall. A thorough analysis revealed not only the lattice expansion of the γ-Fe(C) phase due to incorporation of carbon atoms but also a monoclinic distortion of the cubic lattice with orts c > a = b and square base transformed into a rhombic one. The monoclinic lattice distortion was referred to the uniaxial symmetry of the encapsulating tube. No evident coherency was observed in the atomic arrangement at the interface between Fe particle and inner shell of the carbon tube, as well as in the atomic arrangement of neighboring graphene shells of the carbon nanotube wall, meaning that the chirality of the shells is not coherent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, Science 274, 1701 (1996).

    Article  Google Scholar 

  2. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, Science 283, 512 (1999). doi: 10.1126/science.283.5401.512

    Article  Google Scholar 

  3. X.-Z. Ding, L. Huang, X. T. Zeng, S. P. Lau, B. K. Tay, W. Y. Cheung, and S. P. Wong, Carbon 42, 3003 (2004).

    Article  Google Scholar 

  4. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Science 282, 1105 (1998).

    Article  Google Scholar 

  5. Z. P. Huang, J. W. Xu, Z. F. Ren, J. H. Wang, M. P. Sie-gal, and P. N. Provencio, Appl. Phys. Lett. 73, 3845 (1998).

    Article  Google Scholar 

  6. C. Bower, W. Zhu, S. Jin, and O. Zhou, Appl. Phys. Lett. 77, 830 (2000).

    Article  Google Scholar 

  7. M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupes-inghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, J. Appl. Phys. 90, 5308 (2001).

    Article  Google Scholar 

  8. B. Vigolo, C. S. Cojocaru, J. Faerber, J. Arabski, L. Gangloff, P. Legagneux, H. Lezec, and F. le Nor-mand, Nanotechnology 19, 135601 (2008).

    Article  Google Scholar 

  9. H. Chen, A. Roy, J.-B. Baek, L. Zhu, J. Qua, and L. Dai, Mater. Sci. Eng. R 70, 63 (2010).

    Article  Google Scholar 

  10. C. N. R. Rao, R. Sen, B. C. Satishkumar, and A. Govindaraj, Chem. Commun. 15, 1525 (1998).

    Article  Google Scholar 

  11. P. J. Cao, Y. S. Gu, H. W. Liu, F. Shen, Y. G. Wang, Q. F. Zhang, J. L. Wu, and H. J. Gao, J. Mater. Res. 18, 1686 (2003).

    Article  Google Scholar 

  12. C. Singh, M. S. P. Shaffer, and A. H. Windle, Carbon 41, 359 (2003).

    Article  Google Scholar 

  13. A. K. Schaper, H. Hou, A. Greiner, and F. Phillipp, J. Catal. 222, 250 (2004).

    Article  Google Scholar 

  14. N. G. Chechenin, P. N. Chernykh, E. A. Vorobyeva, and O. S. Timofeev, Appl. Surf. Sci. 275, 217 (2013). http://dx.doi.org/10.1016/j.apsusc.2012.12.162

    Article  Google Scholar 

  15. A. V. Makunin, K. E. Bachurin, E. A. Vorobyeva, A. A. Serdyukov, and N. G. Chechenin, Phys. Chem. Mater. Treatm. 4, 66 (2011).

    Google Scholar 

  16. A. V. Makunin, N. G. Chechenin, A. A. Serdyukov, K. E. Bachurin, and E. A. Vorobyeva, Inorg. Mater.: Appl. Res. 2, 252 (2011).

    Google Scholar 

  17. R. F. Klie, D. Ciuparu, L. Pfefferle, and Y. Zhu, Carbon 42, 1953 (2004).

    Article  Google Scholar 

  18. D. B. Williams and C. B. Carter, Transmission Electron Microscopy (Plenum, New York, 1996), Chap. 17.

    Book  Google Scholar 

  19. A. Graff, T. Gemming, P. Simon, R. Kozhuharova, M. Ritschel, T. Mühl, I. Mönch, C. M. Schneider, and A. Leonhardt, Microsc. Microanal. 9 (S03), 180 (2003).

    Google Scholar 

  20. T. Kizuka, K. Miyazawa, and D. Matsuura, J. Nanotech-nol. 2012, 613746 (2012). doi:10.1155/2012/613746

    Google Scholar 

  21. D. Golberg, M. Mitome, Ch. Muller, C. Tang, A. Leonhardt, and Y. Bando, Acta Mater. 54, 2567 (2006).

    Article  Google Scholar 

  22. D. Golberg, Y. Bando, L. Bourgeois, and K. Kurash-ima, Carbon 37, 1858 (1999).

    Article  Google Scholar 

  23. M. Miki-Yoshida, J. L. Elechiguerra, W. Antúnez-Flores, A. Aguilar-Elguezabal, and M. José-Yacamán, Microsc. Microanal. 10 (S02), 370 (2004). doi: 10.1017/S1431927604886677

    Article  Google Scholar 

  24. K. Hirahara, M. Kociak, S. Bandow, T. Nakahira, K. Itoh, Y. Saito, and S. Iijima, Phys. Rev. B 73, 195420 (2006).

    Article  Google Scholar 

  25. S. Friedrichs, A. H. Windle, K. Koziol, C. Ducati, and P. A. Midgley, Microsc. Microanal. 11 (S02), 1536 (2005). doi: 10.1017/S1431927605503519

    Google Scholar 

  26. K. Koziol, M. Shaffer, and A. H. Windle, Adv. Mater. 17, 760 (2005).

    Article  Google Scholar 

  27. M. Kumar, in Carbon Nanotubes—Synthesis, Charac-terization, Applications, Ed. by S. Yellampalli (Intech Europe, Rijeka, Croatia, 2011), Chap. 8, p. 147.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Chechenin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chechenin, N.G., Chernykh, P.N., Vorobyeva, E.A. et al. Structure phases of fe nanoparticles in vertically aligned multi-walled carbon nanotubes. J. Surf. Investig. 9, 1044–1055 (2015). https://doi.org/10.1134/S1027451015050237

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451015050237

Keywords

Navigation