Skip to main content
Log in

Diagnostic Study of the Lightning Potential Index and Electric Field in Two Thunderstorm Cases over Bangladesh

  • OPTICAL MODELS AND DATABASES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

A thunderstorm is an extreme weather event that has become one of the most alarming disasters in Bangladesh because of its frequent occurrence and devastation in recent years. This study investigates the physical and dynamical characteristics of thunderstorms and their associated lightning over Bangladesh using the Weather Research and Forecasting (WRF) model. Two thunderstorm cases that occurred over central and south-western regions of Bangladesh on April 25, 2018, and May 11, 2018, have been simulated using three domains of 9-km, 3-km, and 1-km horizontal grid sizes. The simulated results are then compared with the observations from the Bangladesh Meteorological Department (BMD), University of Wyoming, and Meteorological & Oceanographic Satellite Data Archival Centre (MOSDAC). Convective Available Potential Energy (CAPE) and Total Total Index (TTI) are analyzed and found to be 1500 J/kg and 48°C, respectively, 10 hours before both events. Vertical wind has been found around 4 m/s before the event. Ice and graupel mixing ratios are found at very high concentrations at the cloud center. Lightning Potential Index (LPI) has been calculated using mixing ratios of different hydrometeors and vertical wind. The LPI is found to be 0.2 to 0.8 J/kg for the two cases. For estimating the electric field inside the thunderclouds, an algorithm that considers ice and graupel as leading charge carriers has been used. The electric field is found to be 70 kV/m at an altitude of 8 km for the first case and −125 kV/m at an altitude of 7 km for the second case. All the parameters are found favorable for the initiation of thunderstorms and lightning occurrence. It indicates that the algorithm suggested in this study can be used to predict high-impact weather events in Bangladesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. J. Bobick and B Naomi, The Handy Science Answer Book, 5th ed. (Visible Ink Press, 2010). https://www. visibleinkpress.com/t192/The-Handy-Science-Answer-Book-Fifth-Edition. Cited March 15, 2022.

  2. A. Dewan, M. F. Hossain, M. M. Rahman, Y. Yamane, and R. L. Holle, “Recent lightning-related fatalities and injuries in Bangladesh,” Weather Clim. Soc. 9 (3), 575–589 (2017). https://doi.org/10.1175/WCAS-D-16-0128.1

    Article  Google Scholar 

  3. R. L. Holle, A. Dewan, Sh. Mohammad, Md. R. Karim, and Md. F. Hosain, “Lightning fatalities and injuries in Bangladesh from 1990 through 2017,” in Proc. of the 25th International Lightning Detection Conference & 7th International Lightning Meteorology Conference, March 12–15, 2018, Florida, USA. https://www.vaisala. com/sites/default/files/documents/Lightning%20Fatalities%20and%20Injuries%20in%20Bangladesh%20from% 201990%20through%202017_R.L.%20Holle%20et%20al. pdf. Cited March 15, 2022.

  4. J. J. George, Weather Forecasting for Aeronautics (Academic Press, 2014).

    Google Scholar 

  5. J. S. Sturtevant. The Severe local Storm Forecasting Primer (Weather Scratch Meteorological Services, 1995).

    Google Scholar 

  6. J. G. Galway, “The lifted index as a predictor of latent instability,” Bull. Am. Meteorol. Soc. 37, 528–529 (1956). https://doi.org/10.1175/1520-0477-37.10.528

    Article  ADS  Google Scholar 

  7. E. R. Williams, S. G. Geotis, N. Renno, S. A. Rutledge, E. Rasmussen, and T. Rickenbach, “A radar and electrical study of tropical “hot towers”,” J. Atmos. Sci. 49, 1386–1395 (1992).

    Article  ADS  Google Scholar 

  8. S. Ackerman and J. Knox, Meteorology (Jones & Bartlett Publishers, 2011).

    Google Scholar 

  9. D. R. Bright, M. S. Wandishin, R. E. Jewell, and S. J. Weiss, “A physically based parameter for lightning prediction and its calibration in ensemble forecasts,” in Preprints, Conf. on Meteor. Appl. of Lightning Data (Amer. Meteor. Soc., San Diego, CA, 2005), p. 30.

  10. Y. Yair, B. Lynn, C. Price, V. Kotroni, K. Lagouvardos, E. Morin, A. Mugnai, and M. Llasat Del Carmen, “Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields,”J. Geophys. Res. Atmos. (2010). https://doi.org/10.1029/2008JD010868

  11. B. Lynn and Y. Yair, “Prediction of lightning flash density with the WRF model,” Adv. Geophys. 23, 11–16 (2010). https://doi.org/10.5194/adgeo-23-11-2010

    Article  Google Scholar 

  12. S. O. Dementyeva, N. V. Ilin, and E. A. Mareev, “Calculation of the lightning potential index and electric field in numerical weather prediction models,” Izv. Atmos. Ocean. Phys. 51, 186–192 (2015). https://doi.org/10.1134/S0001433815010028

    Article  Google Scholar 

  13. A. A. Evtushenko and E. A. Mareev, “On the generation of charge layers in MCS stratiform regions,” Atmos. Res. 91 (2–4), 272–280 (2009). https://doi.org/10.1016/j.atmosres.2008.07.010

    Article  Google Scholar 

  14. A. A. Evtushenko and E. A. Mareev, “Generating electric-discharge layers in mesoscale convective systems,” Izv. Atmos. Ocean. Phys. 45, 242–252 (2009). https://doi.org/10.1134/S0001433809020091

    Article  Google Scholar 

  15. E. R. Jayaratne, C. P. R. Saunders, and J. Hallett, “Laboratory studies of the charging of soft-hail during ice crystal interactions,” Q. J. Roy. Meteor. Soc. 109 (461), 609–630 (1983). https://doi.org/10.1002/qj.49710946111

    Article  ADS  Google Scholar 

  16. V. Cooray, “An introduction to lightning,” in An Introduction to Lightning (Springer Dordrecht, 2015). https://doi.org/10.1007/978-94-017-8938-7.

  17. C. Saunders, “Charge separation mechanisms in clouds,” Space Sci. Rev. 137, 335 (2008). https://doi.org/10.1007/s11214-008-9345-0

    Article  ADS  Google Scholar 

  18. H. D. Betz, K. Schmidt, P. Laroche, P. Blanchet, W. P. Oettinger, E. Defer, Z., Dziewit and J. Konarski, “LINET—an international lightning detection network in Europe. Atmos. Res. 91 (2–4), 564–573 (2009). https://doi.org/10.1016/j.atmosres.2008.06.012

    Article  Google Scholar 

  19. E. Galanaki, V. Kotroni, K. Lagouvardos, and A. Argiriou, “A ten-year analysis of cloud-to-ground lightning activity over the Eastern Mediterranean region,” Atmos. Res. 166, 213–222 (2015). https://doi.org/10.1016/j.atmosres.2015.07.008

    Article  Google Scholar 

  20. A. Karagiannidis, K. Lagouvardos, and V. Kotroni, “The use of lightning data and Meteosat infrared imagery for the nowcasting of lightning activity,” Atmos. Res. 168, 57–69 (2016). https://doi.org/10.1016/j.atmosres.2015.08.011

    Article  Google Scholar 

  21. K. Lagouvardos, V. Kotroni, H. D. Betz, and K. Schmidt, “A comparison of lightning data provided by ZEUS and LINET networks over Western Europe,” Nat. Hazards Earth Sys. Sci. 9 (5), 1713–1717 (2009). https://doi.org/10.5194/nhess-9-1713-2009

    Article  ADS  Google Scholar 

  22. D. R. Poelman, W. Schulz, G. Diendorfer, and M. Bernardi, “The European lightning location system EUCLID—Part 2: Observations,” Nat. Hazards Earth Sys. Sci. 16 (2), 607–616 (2016). https://doi.org/10.5194/nhess-16-607-2016

    Article  ADS  Google Scholar 

  23. H. Pohjola and A. Mäkelä, “The comparison of GLD360 and EUCLID lightning location systems in Europe,” Atmos. Res. 123, 117–128 (2013). https://doi.org/10.1016/j.atmosres.2012.10.019

    Article  Google Scholar 

  24. W. Schulz, G. Diendorfer, S. Pedeboy, Poelman Roel, and D. Poelman, “The European lightning location system EUCLID—Part 1: Performance analysis and validation,” Nat. Hazards Earth Sys. Sci. 16 (2), 595–605 (2016). https://doi.org/10.5194/nhess-16-595-2016

    Article  ADS  Google Scholar 

  25. M. Stolzenburg, T. C. Marshall, W. D. Rus, and B. F. Smull, “Horizontal distribution of electrical and meteorological conditions across the stratiform region of a mesoscale convective system,” Mon. Weather Rev. 122, 1777–1797 (1994). https://journals.ametsoc.org/ view/journals/mwre/122/8/1520-0493_1994_122_1777_ hdoeam_ 2_0_co_2.xml.

    Article  ADS  Google Scholar 

  26. D. J. Gochis, W. Yu, and D. Yates, The WRF-Hydro Model Technical Description and User’s Guide, Version 3.0. NCAR Technical Document (NCAR, 2015).

    Google Scholar 

  27. J. R. Holton and G. J. Hakim, An Introduction to Dynamic Meteorology, 5th ed. (Elsevier, 2012). https://doi.org/10.1016/C2009-0-63394-8.

  28. S. Goyal, A. Kumar, G. Sangar, and M. Mohapatra, “Severe thunderstorm activity over Bihar on April 21, 2015: A simulation study by satellite based nowcasting technique,” Proc. SPIE 9876 (2016). https://doi.org/10.1117/12.2222740

  29. V. Mathon and H. Laurent, “Life cycle of Sahelian mesoscale convective cloud systems,” Q. J. R. Meteorol. Soc. 127 (572), 377–406 (2001). https://doi.org/10.1002/qj.49712757208

    Article  ADS  Google Scholar 

  30. MOSDAC Satellite Image. https://mosdac.gov.in/ g-allery/index.html?&prod=3DIMG_*_L1C_ASIA_MER_BIMG.jpg&date= 2018-05-11&count=48#. Cited September 11, 2021.

  31. T. C. Marshall and W. D. Rust, “Electric field soundings through thunderstorms,” J. Geophys. Res. 96 (D12), 22297–22306 (1991). https://doi.org/10.1029/91jd02486

    Article  ADS  Google Scholar 

  32. T. C. Marshall and B. Lin, “Electricity in dying thunderstorms,” J. Geophys. Res. 97 (D9), 9913–9918 (1992). https://doi.org/10.1029/92jd00463

    Article  ADS  Google Scholar 

  33. H. Volland, Handbook of Atmospheric Electrodynamics, Vol. II (CRC Press, 2017). https://doi.org/10.1201/9780203713297.

  34. T. C. Marshall and M. Stolzenburg, “Estimates of cloud charge densities in thunderstorms,” J. Geophys. Res. 103 (D16), 19769–19775 (1998). https://doi.org/10.1029/98JD01674

    Article  ADS  Google Scholar 

  35. R. C. Miller, Notes on the Analysis and Severe-storm Forecasting Procedures of the Air Force Global Weather Central (Air Weather Service, United States Air Force, 1972).

  36. WRF-LPI. https://srf.tropmet.res.in/srf/ts_prediction_ system/lpi_model.php. Cited July 31, 2020.

  37. Atmospheric Soundings. http://weather.uwyo.edu/ upperair/sounding.html. Cited July 31, 2020.

  38. R. H. Johns and C. A. Doswell, “Severe local storms forecasting,” Weather Forecast. 7 (4), 588–612 (1992). https://doi.org/10.1175/1520-0434(1992)007<0588:slsf>2.0.co;2

    Article  ADS  Google Scholar 

  39. M. Rajasekhar, T. Sreeshna, M. Rajeevan, and S. S. V. S. Ramakrishna, “Prediction of severe thunderstorms over Sriharikota Island by using the WRF-ARW operational model,” SPIE 9882, 147–164 (2016).

    Google Scholar 

  40. A. J. Haklander and A Van Delden, “Thunderstorm predictors and their forecast skill for the Netherlands,” Atmos. Res. 67-68, 273–299 (2003). https://doi.org/10.1016/S0169-8095(03)00056-5

    Article  Google Scholar 

  41. M. N. Ahasan and S. K. Debsarma, “Impact of data assimilation in simulation of thunderstorm (squall line) event over Bangladesh using WRF model, during SAARC–STORM Pilot Field Experiment 2011,” Nat. Hazards 75, 1009–1022 (2015). https://doi.org/10.1007/s11069-014-1369-z

    Article  Google Scholar 

  42. T. C. Marshall, M. P. McCarthy, and W. D. Rust, “Electric field magnitudes and lightning initiation in thunderstorms,” J. Geophys. Res. 100 (D4), 7097–7103 (1995). https://doi.org/10.1029/95JD00020

    Article  ADS  Google Scholar 

  43. M. K. Das, M. A. M. Chowdhury, S. Das, S. Karmakar, and S. K. Saha, “Study of the physical and dynamical characteristics of MCS associated with squalls and their simulation using WRF model,” Atmosphere 8, 33–42 (2019).

    Google Scholar 

  44. M. Mahbub Alam, “Impact of cloud microphysics and cumulus parameterization on simulation of heavy rainfall event during 7–9 October 2007 over Bangladesh,” J. Earth Syst. Sci. 123 (2), 259–279 (2014).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the National Centre for Atmospheric Research (NCAR) for making the WRF (WRF-ARW) model available, to Bangladesh Meteorological Department (BMD) for providing squall data for the pre-monsoon season over Bangladesh, to the Department of Meteorology, the University of Dhaka, for providing high computational support. The author is also grateful to the anonymous reviewers who assisted in the revision of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pappu Paul.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pappu Paul, Imran, A., Mallik, M.A. et al. Diagnostic Study of the Lightning Potential Index and Electric Field in Two Thunderstorm Cases over Bangladesh. Atmos Ocean Opt 35, 524–540 (2022). https://doi.org/10.1134/S1024856022050177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022050177

Keywords:

Navigation