Skip to main content

Advertisement

Log in

Detail study of time evolution of three thunderstorm events in Tehran area using observations and numerical simulations for lightning nowcasting

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The first hourly observations of thunderclouds and associated lightning events for Tehran area are presented in this paper. Hourly data of Cloud to Ground (CG) lightning events in Tehran area is provided by The World Wide Lightning Location Network (WWLLN). Several indices such as Convective Available Potential Energy (CAPE) and CAPE times total precipitation are examined. Three out of 30 lightning events between 2009 and 2013 in Tehran area with various degrees of agreement with the introduced proxies are investigated in detail using numerical simulations and observations. The spatial correlation and temporal correlation of the lightning strikes are compared with the indices with the goal of developing lightning prediction index as well as a better interpretation of CAPE spatial map. The storm cell area and associated CG lightning are studied to determine the formation, growth, and dissipation phases of the thunderstorm. A physical picture of the observations is obtained and explained using the numerical simulations in this paper as a method for storm nowcasting. This includes an estimation of storm distribution, strike polarity, and complicated structure formation such as anvil, approximate strike location, density, as well as approximate velocity, and direction of propagation to some degrees. To understand the physical properties of the observed treatment of the studied lightning occurrences, numerical simulations were conducted using the WRF-ELEC model. In this regard, the temporal evolution of the net charge, the electric field, and radar reflectivity during the lightning activity was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Betz HD, Schmidt K, Oettinger WP, Montag B (2008) Cell-tracking with lightning data from LINET. Adv Geosci 17:55–61

    Article  Google Scholar 

  • Boccippio DJ, Koshak WJ, Blakeslee RJ (2002) Performance assessment of the optical transient detector and lightning imaging sensor, I, predicted diurnal variability. J Atmos Oceanic Technol 19:1318–1332

    Article  Google Scholar 

  • Bruning EC, Rust WD, Schuur TJ, MacGorman DR, Krehbiel PR, Rison W (2007) Electrical and polarimetric radar observations of a multicell storm in TELEX. Mon Weather Rev 135:2525–2544

    Article  Google Scholar 

  • Bruning EC, MacGorman DR (2013) Theory and observations of controls on lightning flash size spectra. J Atmos Sci 70(12):4012–4029

    Article  Google Scholar 

  • Calhoun KM, MacGorman DR, Ziegler CL, Biggerstaff MI (2013) Evolution of lightning activity and storm charge relative to dual-Doppler analysis of a high-precipitation supercell storm. Mon Weather Rev 141(7):2199–2223

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part II: Preliminary model validation. Mon Weather Rev 129(4):587–604

    Article  Google Scholar 

  • Copernicus Climate Change Service (C3S) (2017) ERA5. In: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS)

  • Coquillat S, Defer E, Guibert PD, Lambert D, Pinty JP, Pont V, Prieur S, Thomas RJ, Krehbiel PR, Rison W (2019) SAETTA: high-resolution 3-D mapping of the total lightning activity in the Mediterranean Basin over Corsica, with a focus on a mesoscale convective system event. Atmos Meas Tech 12(11):5765–5790

    Article  Google Scholar 

  • Defer E, Pinty JP, Coquillat S, Martin JM, Prieur S, Soula S, Richard E, Rison W, Krehbiel P, Thomas R, Rodeheffer D (2015) An overview of the lightning and atmospheric electricity observations collected in southern France during the HYdrological cycle in Mediterranean EXperiment (HyMeX), Special Observation Period 1. Atmos Meas Tech 8(2):649–669

    Article  Google Scholar 

  • Deierling W, Petersen WA, Latham J, Ellis S, Christian H (2008) The relationship between lightning activity and ice fluxes in thunderstorms. J Geophys Res 113:D15210. https://doi.org/10.1029/2007JD009700

    Article  Google Scholar 

  • Deierling W, Petersen WA (2008) Total lightning activity as an indicator of updraft characteristics. J Geophys Res Atmos 113(D16):569

    Article  Google Scholar 

  • Dendy JE Jr (1987) Two multigrid methods for three-dimensional problems with discontinuous and anisotropic coefficients. SIAM J Sci Stat Comput 8(5):673–685

    Article  Google Scholar 

  • Dendy JE Jr, Moulton JD (2010) Black Box Multigrid with coarsening by a factor of three. Numer Linear Algebra Appl 17(2–3):577–598

    Article  Google Scholar 

  • Duda JD (2011) WRF simulations of mesoscale convective systems at convection-allowing resolutions

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46(20):3077–3107

    Article  Google Scholar 

  • Formenton M, Panegrossi G, Casella D, Dietrich S, Mugnai A, Sanò P, Paola FD, Betz HD, Price C, Yair Y (2013) Using a cloud electrification model to study relationships between lightning activity and cloud microphysical structure. Nat Hazards Earth Syst Sci 13(4):1085–1104

    Article  Google Scholar 

  • Fierro AO, Mansell ER, MacGorman DR, Ziegler CL (2013) The implementation of an explicit charging and discharge lightning scheme within the WRF-ARW model: benchmark simulations of a continental squall line, a tropical cyclone, and a winter storm. Mon Weather Rev 141(7):2390–2415

    Article  Google Scholar 

  • Finney DL, Doherty RM, Wild O, Stevenson DS, MacKenzie IA, Blyth AM (2018) A projected decrease in lightning under climate change. Nat Clim Change 8(3):210–213. https://doi.org/10.1038/s41558-018-0072-6

    Article  Google Scholar 

  • George J (1960) Weather forecasting for aeronautics. Academic Press, New York, p 41

    Google Scholar 

  • Gharaylou M, Farahani MM, Hosseini M, Mahmoudian A (2019) Numerical study of performance of two lightning prediction methods based on: Lightning Potential Index (LPI) and electric POTential difference (POT) over Tehran area. J Atmos Solar Terr Phys 193:105067

    Article  Google Scholar 

  • Gurevich AV, Milikh GM, Roussel-Dupre R (1992) Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys Lett 165A:463–468

    Article  Google Scholar 

  • Houze RA Jr (2004) Mesoscale convective systems. Rev Geophys 42(4):598

    Article  Google Scholar 

  • Houze RA Jr, Lee WC, Bell MM (2009) Convective contribution to the genesis of Hurricane Ophelia (2005). Mon Weather Rev 137(9):2778–2800

    Article  Google Scholar 

  • Hutchins ML, Holzworth RH, Brundell JB, Rodger CJ (2012) Relative detection efficiency of the world wide lightning location network. Radio Sci 47(6):6987

    Article  Google Scholar 

  • Illingworth AJ, Latham J (1977) Calculations of electric field growth, field structure and charge distributions in thunderstorms. QJR Meteorol Soc 103:281–295. https://doi.org/10.1002/qj.49710343606

    Article  Google Scholar 

  • Jacobson AR, Holzworth R, Harlin J, Dowden R, Lay E (2006) Performance assessment of the world wide lightning location network (WWLLN), using the Los Alamos sferic array (LASA) as ground truth. J Atmos Ocean Technol 23(8):1082–1092

    Article  Google Scholar 

  • Janjić ZI (1990) The step-mountain coordinate: physical package. Mon Weather Rev 118(7):1429–1443

    Article  Google Scholar 

  • Janjić ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122(5):927–945

    Article  Google Scholar 

  • Janjic ZI (1996) The Mellor-Yamada level 2.5 turbulence closure scheme in the NCEP Eta Model. World Meteorological Organization-Publications-Wmo Td, New York, pp 4–14

    Google Scholar 

  • Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: The Kain-Fritsch scheme. In: The representation of cumulus convection in numerical models. American Meteorological Society, pp 165-170

  • Kuhlman KM, Ziegler CL, Mansell ER, MacGorman DR, Straka JM (2006) Numerical simulations of the 29 June 2000 STEPS supercell: microphysics, electrification, and lightning. Mon Weather Rev 134:2734–2757

    Article  Google Scholar 

  • Lay EH, Holzworth RH, Rodger CJ, Thomas JN, Pinto O Jr, Dowden RL (2004) WWLL global lightning detection system: regional validation study in Brazil. Geophys Res Lett 31:L03102. https://doi.org/10.1029/2003GL018882

    Article  Google Scholar 

  • Lynn B, Yair Y (2010) Prediction of lightning flash density with the WRF model. Adv Geosci 23:11–16

    Article  Google Scholar 

  • Liu Y, Chen F, Warner T, Basara J (2006) Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 field project. J Appl Meteor Climatol 45(7):912–929

    Article  Google Scholar 

  • MacGorman DR, MacGorman R, Rust WD (1998) The electrical nature of storms. Oxford University Press, Oxford

    Google Scholar 

  • MacGorman DR, Rust WD, Krehbiel P, Rison W, Bruning E, Wiens K (2005) The electrical structure of two supercell storms during STEPS. Mon Weather Rev 133(9):2583–2607

    Article  Google Scholar 

  • MacGorman DR, Straka JM, Ziegler CL (2001) A lightning parameterization for numerical cloud models. J Appl Meteorol 40(3):459–478

    Article  Google Scholar 

  • Mansell ER, Ziegler CL, Bruning EC (2010) Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J Atmos Sci 67(1):171–194

    Article  Google Scholar 

  • Mansell ER, MacGorman DR, Ziegler CL, Straka JM (2005) Charge structure and lightning sensitivity in a simulated multicell thunderstorm. J Geophys Res Atmos 110(D12):59

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4):851–875

    Article  Google Scholar 

  • Meyer VK, Holler H, Betz HD (2013) The temporal evolution of three-dimensional lightning parameters and their suitability for thunderstorm tracking and nowcasting. Atmos Chem Phys 13:5151–5161

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res Atmos 102(D14):16663–16682

    Article  Google Scholar 

  • Mostajabi A, Finney DL, Rubinstein M, Rachidi F (2019) Nowcasting lightning occurrence from commonly available meteorological parameters using machine learning techniques. Npj Climate Atmos Sci 2(1):1–15

    Google Scholar 

  • Mosier RM, Schumacher C, Orville RE, Carey LD (2011) Radar nowcasting of cloud-to-ground lightning over Houston, Texas. Weather Forecast 26(2):199–212

    Article  Google Scholar 

  • Rodger CJ, Werner S, Brundell JB, Lay EH, Thomson NR, Lay EH, Holzworth RH, Dowden RL (2006) Detection efficiency of the VLF Worldwide Lightning Location Network (WWLLN): Initial case study. Ann Geophys 24:3197–3214

    Article  Google Scholar 

  • Romps DM (2014) An analytical model for tropical relative humidity. J Clim 27(19):7432–7449. https://doi.org/10.1175/JCLI-D-14-00255.1

    Article  Google Scholar 

  • Romps DM, Charn AB, Holzworth RH, Lawrence WE, Molinari J, Vollaro D (2018) CAPE times P explains lightning over land but not the land-ocean contrast. Geophys Res Lett 45:12623–12630. https://doi.org/10.1029/2018GL080267

    Article  Google Scholar 

  • Romps DM (2019) Evaluating the future of lightning in cloud-resolving models. Geophys Res Lett 46:14863–14871. https://doi.org/10.1029/2019GL085748

    Article  Google Scholar 

  • Saunders CPR, Keith WD, Mitzeva RP (1991) The effect of liquid water on thunderstorm charging. J Geophys Res Atmos 96(D6):11007–11017

    Article  Google Scholar 

  • Seroka GN, Orville RE, Schumacher C (2012) Radar nowcasting of total lightning over the Kennedy Space Center. Weather Forecast 27(1):189–204

    Article  Google Scholar 

  • Shi Z, Li L, Tan Y, Wang H, Li C (2019) A numerical study of Aerosol effects on electrification with different intensity thunderclouds. Atmosphere 10(9):508

    Article  Google Scholar 

  • Solomon R, Medaglia CM, Adamo C, Dietrich S, Mugnai A (2003) Relating cloud microphysical properties and lightning: model analysis of an extreme hailstorm. In: Proceedings of the 5th EGS Plinius conference on mediterranean storms, Ajaccio, Corsica, France, pp 1–3

  • Sturtevant JS (1995) The Severe Local Storm Forecasting Primer: Formerly Local Severe Storms Forecasting Environments. Weather Scratch Meteorol Serv 6:9831

    Google Scholar 

  • Tippett MK, Lepore C, Koshak WJ, Chronis T, Vant-Hull B (2019) Performance of a simple reanalysis proxy for U.S. cloud-to-ground lightning. Int J Climatol 39(10):3932–3946. https://doi.org/10.1002/joc.6049

    Article  Google Scholar 

  • Virts KS, Wallace JM, Hutchins ML, Holzworth RH (2013) Highlights of a new ground-based, hourly global lightning climatology. Bull Am Meteorol Soc 94(9):1381–1391

    Article  Google Scholar 

  • Wang F, Zhang Y, Zheng D, Xu L, Zhang W, Meng Q (2017) Semi-idealized modeling of lightning initiation related to vertical air motion and cloud microphysics. J Meteorol Res 31(5):976–986

    Article  Google Scholar 

  • Weiss SA, Rust WD, MacGorman DR, Bruning EC, Krehbiel PR (2008) Evolving complex electrical structures of the STEPS 25 June 2000 multicell storm. Mon Weather Rev 136(2):741–756

    Article  Google Scholar 

  • Wiens KC, Rutledge SA, Tessendorf SA (2005) The 29 June 2000 supercell observed during STEPS. Part II: lightning and charge structure. J Atmos Sci 62:4151–4177

    Article  Google Scholar 

  • Yair Y, Lynn B, Price C, Kotroni V, Lagouvardos K, Morin E, Mugnai A, Llasat MDC (2010) Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields. J Geophys Res Atmos 115(D4):468231

    Article  Google Scholar 

  • Ziegler CL, MacGorman DR (1994) Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm. J Atmos Sci 51(6):833–851

    Article  Google Scholar 

  • Ziegler CL, MacGorman DR, Dye JE, Ray PS (1991) A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm. J Geophys Res Atmos 96(D7):12833–12855

    Article  Google Scholar 

  • Zipser E, Lutz K (1994) The vertical profile of radar reflectivity of convective cells: a strong indicator of storm intensity and lightning probability? Mon Weather Rev 122(8):1751–1759

    Article  Google Scholar 

  • Zipser EJ (1994) Deep cumulonimbus cloud systems in the tropics with and without lightning. Mon Weather Rev 122(8):1837–1851

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the World Wide Lightning Location Network (http://wwlln.net), a collaboration among over 50 universities and institutions, for providing the lightning location data used in this paper. The WWLLN data can be found in the link http://doi.org/10.5281/zenodo.3945962. The CAPE, total precipitation ,and convective and large-scale rain rate data are obtained from the link of https://cds.climate.copernicus.eu/cdsapp

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gharaylou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first comparison of CAPE×TP index with hourly distribution of CG lightning strikes for indicating the probability of flashes. Lightning cell tracking can be used to determine the convective cell formation, growth and dissipation. Numerical simulations validate that CAPE map can be implemented to predict anvil formation and high intensity lightning flashes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudian, A., Gharaylou, M. & Holzworth, R. Detail study of time evolution of three thunderstorm events in Tehran area using observations and numerical simulations for lightning nowcasting. Nat Hazards 109, 1481–1508 (2021). https://doi.org/10.1007/s11069-021-04886-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04886-4

Navigation